
Under consideration for publication in J. Functional Programming 1

FUNCTIONAL PEARL

Idioms: applicative programming with effects

CONOR MCBRIDE
University of Nottingham

ROSS PATERSON
City University, London

Abstract

In this paper, we introduce Idioms—an abstract characterisation of an applicative style
of effectful programming, weaker than Monads and hence more widespread. Indeed, it is
the ubiquity of this programming pattern which drew us to the abstraction. We shall take
the same course in this paper, introducing the applicative pattern by diverse examples,
then abstracting it to define the Idiom type class and associated laws. We compare this
abstraction with monoids, monads and arrows, and identify the categorical structure of
idioms.

1 Introduction

This is the story of a pattern which popped up time and again in our daily work,
programming in Haskell (Peyton Jones, 2003), until the point where the temptation
to abstract it became irresistable. Let us illustrate with some examples.

1.1 Sequencing commands

It is not unusual to execute a sequence of commands and collect the sequence of
their responses:

sequence :: [IO x]→ IO [x]
sequence [] = return []
sequence (c : cs) = do

x ← c
xs ← sequence cs
return (x : xs)

In the (c : cs) case, we collect the values of some effectful computations, which we
then use as the arguments to a pure function (:). We could avoid the need for names
to wire these values through to their point of usage if we had a kind of ‘effectful
application’. Fortunately, exactly such a thing lives in the standard Monad library.
We may write

2 Conor McBride and Ross Paterson

sequence :: [IO x]→ IO [x]
sequence [] = return []
sequence (c : cs) = return (:) ‘ap‘ c ‘ap‘ sequence cs

where the return operation, which every Monad must provide, lifts pure values to
the effectful world, and the ap operation provides a kind of application within the
the effectful world:

return :: Monad m ⇒ x → m x

ap :: Monad m ⇒ m (s → t)→ m s → m t
ap mf ms = do

f ← mf
s ← ms
return (f s)

If we could filter out the noise of the returns and aps, we could almost imagine
that we are programming in a fairly standard applicative style, even though effects
are present.

1.2 Transposing ‘matrices’

Suppose we represent matrices (somewhat approximately) by lists of lists. It is not
unusual to develop operations on matrices such as transposition.

transpose :: [[x]]→ [[x]]
transpose [] = repeat []
transpose (xs : xss) = zipWith (:) xs (transpose xss)

Now, the binary zipWith is one of a family of operations which ‘vectorise’ pure
functions. As Daniel Fridlender and Mia Indrika (2000) point out, the entire family
can be generated from repeat, which generates an infinite stream from its argument,
and zapp, a kind of ‘zippy’ application.

repeat :: x → [x]
repeat x = x : repeat x

zapp :: [s → t]→ [s]→ [t]
zapp (f : fs) (s : ss) = f s : zapp fs ss
zapp = []

The general scheme is as follows:

zipWithn :: (s1 → · · · → sn → t)→ [s1]→ · · · → [sn]→ [t]
zipWithn f ss1 . . . ssn = repeat f ‘zapp‘ ss1 ‘zapp‘ . . . ‘zapp‘ ssn

In particular, transposition becomes

transpose :: [[x]]→ [[x]]
transpose [] = repeat []
transpose (xs : xss) = repeat (:) ‘zapp‘ xs ‘zapp‘ transpose xss

If we could filter out the noise of the repeats and zapps, we could almost imagine

Functional pearl 3

that we are programming in a fairly standard applicative style, even though we are
working with vectors.

1.3 Evaluating expressions

When implementing an evaluator for a language of expressions, it is not unusual
to pass around an environment, giving values to the free variables. Here is a very
simple example

data Exp x = Var x
| Val Int

| Add (Exp x) (Exp x)

eval :: Exp x → Env x → Int

eval (Var x) γ = fetch x γ

eval (Val i) γ = i
eval (Add p q) γ = eval p γ + eval q γ

where Env x is some notion of environment and fetch x projects the value for the
variable x .

Threading the environment explicitly clutters the code unnecessarily, but we can
remedy the situation with a little help from some very old friends:

eval :: Exp x → Env x → Int

eval (Var x) = fetch x
eval (Val i) = K i
eval (Add p q) = K (+) ‘S‘ eval p ‘S‘ eval q

where

K :: x → env → x
K x γ = x

S :: (env → s → t)→ (env → s)→ (env → t)
S ef es γ = (ef γ) (es γ)

If we could filter out the noise of the K and S combinators1, we could almost imagine
that we are programming in a fairly standard applicative style, even though we are
abstracting over an environment.

1.4 Parser combinators

This isn’t an example of a transpose — perhaps it belongs later?
A similar interface was proposed for parsers by Röjemo (1995) and developed by

Swierstra and colleagues (Swierstra & Duponcheel, 1996; Baars et al., 2004). Two
primitive components are used to implement each production of a grammar:

succeed :: x → Parser x

(~) :: Parser (s → t)→ Parser s → Parser t

1 also known as the return and ap of the ‘reader’ Monad

4 Conor McBride and Ross Paterson

These productions generally take the form

succeed semantics ~ parser1 ~ . . .~ parsern

where the parser i are the parsers for successive components of the production and
semantics is the pure function which delivers the value of the whole from the values
of the parts.

If we could filter out the noise of the succeeds and ~s, we could almost imagine
that we are programming in a fairly standard applicative style, even though we are
combining parsers.

2 The Idiom class

We have seen four examples of this ‘pure function applied to funny arguments’
pattern in apparently quite diverse fields—let us now abstract out what they have
in common. In each example, there is a type constructor i which embeds the usual
notion of value, but supports its own peculiar way of giving meaning to the usual
applicative language—its idiom. We correspondingly introduce the Idiom class:

infixl 4~

class Idiom i where

ι :: x → i x
(~) :: i (s → t)→ i s → i t

This class generalises S and K from threading an environment to threading an effect
in general.

We shall require the following laws for idioms:

identity ι id~ u = u
composition ι (·)~ u ~ v ~ w = u ~ (v ~ w)
homomorphism ι f ~ ι x = ι (f x)
interchange u ~ ι x = ι (λf → f x)~ u

These laws capture the intuition that ι embeds pure computations into the pure
fragment of an effectful world—the resulting computations may thus be shunted
around freely, as long as the order of the genuinely effectful computations is pre-
served.

Exercise 1 (Idioms functorial)
Use these laws to show that the following function makes any idiom a functor:

lift1 :: Idiom i ⇒ (a → b)→ i a → i b
lift1 f u = ι f ~ u

Using these laws, any expression built from the Idiom combinators can be trans-
formed to a canonical form in which a single pure function is ‘applied’ to the effectful
parts in depth-first order:

ι f ~ is1 ~ . . .~ isn

Exercise 2 (canonical form)

Functional pearl 5

Show how this is done. You will need all four laws. Hint: devise a four-phase algo-
rithm to perform the transformation, with one phase for each law.

This canonical form captures the essence of programming in an Idiom—computations
have a fixed structure, given by the pure function, and a sequence of subcompu-
tations, given by the effectful arguments. We therefore find it convenient, at least
within this paper, to write this form using a special notation

J f is1 . . . isn K

The brackets indicate a shift into an idiom where a pure function is applied to a
sequence of computations. Our intention is to provide a sufficient indication that
effects are present without compromising the readability of the code.

Exercise 3 (Coding J . . .K)
Given the functionality of Glasgow Haskell Compiler’s -fglasgow-exts option,
show how to replace ‘J’ and ‘K’ by identifiers iI and Ii whose computational behaviour
delivers the above expansion. Hint: define an overloaded function idiomatic such that

idiomatic u is1 . . . isn Ii = u ~ is1 ~ . . .~ isn

Any Monad can be made an Idiom, taking

instance Idiom MyMonad where

ι = return

mf ~ms = do

f ← mf
s ← ms
return (f s)

In fact, we could also choose to perform mf after ms, which would preserve the
structure of the computation but reverse the effects. We shall work left-to-right in
this paper. Taking the monadic Idiom for IO and (→) s, we get what we expect for
sequence and eval:

sequence :: [IO x]→ IO [x]
sequence [] = J []K
sequence (c : cs) = J(:) c (sequence cs)K

eval :: Exp x → Env x → Int

eval (Var x) = fetch x
eval (Val i) = J i K
eval (Add p q) = J(+) (eval p) (eval q)K

If we want to do the same for our transpose example, we shall have to take an
instance for Idiom [] which supports ‘vectorisation’, rather than the library’s ‘list
of successes’ (Wadler, 1985) monad:

instance Idiom [] where

ι = repeat

(~) = zapp

6 Conor McBride and Ross Paterson

transpose :: [[x]]→ [[x]]
transpose [] = J []K
transpose (xs : xss) = J(:) xs (transpose xss)K

Exercise 4 (the colist Monad)
Although repeat and zapp are not the return and ap of the usual Monad [] instance,
they are none the less the return and ap of an alternative monad, more suited to
the coinductive interpretation of []. What is the join :: [[x]] → [x] of this monad?
Comment on the relative efficiency of this monad’s ap and our zapp.

3 Threading Idioms through IFunctors

Have you noticed that sequence and transpose now look rather alike? The details
which distinguish the two programs are inferred by the compiler from their types.
Both are instances of the idiom distributor for lists:

idist :: Idiom i ⇒ [i x]→ i [x]
idist [] = J []K
idist (ix : ixs) = J(:) ix (idist ixs)K

It is not unusual to combine distribution with ‘map’. For example, we can map
some failure-prone operation (a function in s → Maybe t) across a list of inputs in
such a way that any individual failure causes failure overall.

instance Idiom Maybe where -- the usual return and ap

ι x = Just x
Just f ~ Just s = Just (f s)

~ = Nothing

flakyMap :: (s → Maybe t)→ [s]→ Maybe [t]
flakyMap f ss = idist (fmap f ss)

As you can see, flakyMap traverses ss twice—once to apply f , and again to collect the
results. More generally, it is preferable to define this idiomatic mapping operation
directly, with a single traversal:

imap :: Idiom i ⇒ (s → i t)→ [s]→ i [t]
imap f [] = J []K
imap f (x : xs) = J(:) (f x) (imap f xs)K

This is just the way you would implement the ordinary fmap for lists, but with the
right-hand sides wrapped in J· · ·K, lifting them into the idiom. Just like fmap, imap

is a useful gadget to have for many data structures, hence we introduce the type
class IFunctor, capturing functorial data structures through which idioms thread:

class IFunctor f where

imap :: Idiom i ⇒ (s → i t)→ f s → i (f t)
idist :: Idiom i ⇒ f (i x)→ i (f x)
idist = imap id

Of course, we can recover an ordinary ‘map’ operator by taking i to be the identity
idiom—the usual applicative idiom in which all computations are pure:

Functional pearl 7

newtype Id x = An{an :: x }

Haskell’s newtype declarations allow us to shunt the syntax of types around without
changing the run-time notion of value or incurring any run-time cost. The ‘labelled
field’ notation allows us to define the projection an :: Id x → x at the same time as
the constructor An::x → Id x . The usual applicative idiom has the usual application:

instance Idiom Id where

ι x = An x
An f ~ An s = An (f s)

So, with the newtype signalling which idiom to thread, we have

fmap f = an · imap (An · f)

The rule-of-thumb ‘imap is like fmap but with J · · · K on the right’ is good for
first-order type constructors, such as lists, trees,

data Tree x = Leaf | Node (Tree x) x (Tree x)

instance IFunctor Tree where

imap f Leaf = JLeaf K
imap f (Node l x r) = JNode (imap f l) (f x) (imap f r)K

and even ‘nested’ types, like the de Bruijn λ-terms (Bird & Paterson, 1999), parametrised
by their type of free variables:

data Term x = TVar x
| TApp (Term x) (Term x)
| TLam (Term (Maybe x))

instance IFunctor Term where

imap g (TVar x) = JTVar (g x)K
imap g (TApp f s) = JTApp (imap g f) (imap g s)K
imap g (TLam t) = JTLam (imap (imap g) t)K

Exercise 5 (distributing Term and Maybe)
What does the specialised function idist :: Term (Maybe x) → Maybe (Term x) tell
you about a term with a free variable?

However, not every Functor is an IFunctor.

Exercise 6 (Functor versus IFunctor)
Find a functor whose imap, if it were well-defined, would solve the Halting Problem.

We are far from the first to consider this distribution of one functor through
another in a general way. Paul Hoogendijk and Roland Backhouse (1997) construct
‘half-zip’ operations in a relational setting. These distribute one regular type con-
structor through another, requiring and preserving ‘compatibility of shape’—matrix
transpose is a key example.

In a functional setting, Lambert Meertens (1998) exhibits sufficient criteria on
functors i to yield an idist-like operator, taking f (i x)→ i (f x) for every regular
functor f (that is, ‘ordinary’ uniform datatype constructors with one parameter,

8 Conor McBride and Ross Paterson

constructed by recursive sums of products). Idiom i certainly satisfy these criteria,
hence Meertens confirms our intuition that at least the regular type constructors
can all be made instances of IFunctor.

Curiously, monads are not Meertens’ primary example of functors to thread
through a data structure, although he does suggest that this might always work.
Rather, he seeks to generalise accumulation or ‘crush’ operators, such as flattening
trees and summing lists. We shall turn to these in the next section.

4 Monoids: the Phantom Idioms

The data which one may sensibly accumulate have the Monoid structure:

class Monoid o where

∅ :: o
(⊕) :: o → o → o

These operations must satisfy the usual laws:

left identity ∅ ⊕ x = x
right identity x ⊕ ∅ = x
associativity (x ⊕ y)⊕ z = x ⊕ (y ⊕ z)

The functional programming world is full of monoids—numeric types (with re-
spect to zero and plus, or one and times), lists with respect to [] and ++, and many
others—so generic technology for working with them could well prove to be useful.
Fortunately, every monoid induces an idiom, albeit in a slightly peculiar way:

newtype Accy o x = Acc{acc :: o}

Accy o x is a phantom type (Leijen & Meijer, 1999)—its values have nothing to do
with x , but it does yield the idiom of accumulating computations:

instance Monoid o ⇒ Idiom (Accy o) where

ι = Acc ∅
Acc o1 ~ Acc o2 = Acc (o1 ⊕ o2)

Now ‘crushing’ is just traversing an IFunctor, in the same way as with any other
idiom, just as Meertens suggested:

icrush :: (IFunctor f ,Monoid o)⇒ (x → o)→ f x → o
icrush m = acc · imap (Acc ·m)

isum :: (IFunctor f ,Monoid o)⇒ f o → o
isum = icrush id

Operations like flattening and concatenation become straightforward:

flatten :: Tree x → [x]
flatten = icrush (:[])

concat :: [[x]]→ [x]
concat = isum

Functional pearl 9

We can extract even more work from instance inference if we use the type system
to distinguish different monoids available for a given datatype. Here, we use the
disjunctive structure of Bool to test for the presence of an element satisfying a
given predicate:

newtype Mighty = Might{might :: Bool}
instance Monoid Mighty where

∅ = Might False

Might b ⊕Might c = Might (b ∨ c)

any :: IFunctor f ⇒ (x → Bool)→ f x → Bool

any p = might · icrush (Might · p)

elem :: (Eq x , IFunctor f)⇒ x → f x → Bool

elem x = any (≡ x)

This elem function behaves as usual for lists, but it is just as effective at telling
whether a variable in x occurs free in a Term x .

Meanwhile, Bool also has a conjunctive structure:

newtype Musty = Must{must :: Bool}
instance Monoid Musty where

∅ = Must True

Must b ⊕Must c = Must (b ∧ c)

all :: IFunctor f ⇒ (x → Bool)→ f x → Bool

all p = must · icrush (Must · p)

boundedBy :: (Ord x , IFunctor f)⇒ x → f x → Bool

boundedBy x = all (6 x)

Exercise 7 (every Ord induces a Monoid)
Show how every instance of Ord induces an instance of Monoid. Use icrush to define
the partial function

max :: (IFunctor f ,Ord x)⇒ f x → x

computing the greatest x contained in its input and undefined if there are none.

Exercise 8 (adverbial programming)
Define an overloaded operator ily such that

fmap = An ‘ily‘ imap

icrush = Acc ‘ily‘ imap

any = Might ‘ily‘ icrush

all = Must ‘ily‘ icrush

and so on.

5 Idiom versus Monad?

We have seen that every Monad can be made an Idiom via return and ap. Indeed, our
three introductory examples of idioms involved the IO monad, the ‘reader’ monad

10 Conor McBride and Ross Paterson

(→) s and a (non-standard) monad for (coinductive) lists. However, the Accy o
idioms are not monadic: return can deliver ∅, but if you try to define

(>>=) :: Accy o s → (s → Accy o t)→ Accy o t

you’ll find it tricky to extract an s from the first argument—all you get is an o.
Correspondingly, there is no way to apply the second argument, and hence no way
to accumulate its output. The ~ for Accy o is not the ap of a monad.

So now we know: there are strictly more Idioms than Monads. Should we just
throw the Monad class away and use Idiom instead? Of course not! The reason there
are fewer monads is just that the Monad structure is more powerful. Intuitively, the
(>>=) :: m s → (s → m t) → m t of some Monad m allows the value returned by
one computation to influence the choice of another, whereas ~ keeps the structure
of a computation fixed, just sequencing the effects. For example, one may write

miffy :: Monad m ⇒ m Bool→ m t → m t → m t
miffy mb mt me = do

b ← mb
if b then mt else me

so that the value of mb will choose between the computations mt and me, perform-
ing only one, whilst

iffy :: Idiom i ⇒ i Bool→ i t → i t → i t
iffy ib it ie = Jcond ib it ie K where

cond b t e = if b then t else e

performs the effects of all three computations, using the value of ib to choose only
between the values of it and ie. This can be a bad thing: for example,

iffy JTrueK J t K Nothing = Nothing

where

miffy JTrueK J t K Nothing = J t K

However, if you are working with miffy, it is probably because the condition
is an expression with effectful components, so the idiom syntax provides quite a
convenient extension to the monadic toolkit:

miffy J(6) getSpeed getSpeedLimit K stepOnIt check4Cops

The moral is this: if you’ve got an Idiom, that’s good; if you’ve also got a Monad,
that’s even better! And the dual of the moral is this: if you want a Monad, that’s
good; if you only want an Idiom, that’s even better! The weakness of idioms makes
them easier to construct from components. In particular, although only certain
pairs of monads are composable (Barr & Wells, 1984), the Idiom class is closed
under composition,

newtype (i ◦ j) x = Comp{comp :: (i (j x))}

just by lifting the inner idiom operations to the outer idiom layer:

Functional pearl 11

instance (Idiom i , Idiom j)⇒ Idiom (i ◦ j) where

ι x = Comp J(ι x)K
Comp fij ~ Comp sij = Comp J(~) fij sij K

As a consequence, the composition of two monads may not be a monad, but it
is certainly an idiom. For example, IO ◦Maybe is an idiom in which computations
have a notion of ‘failure’ and ‘prioritised choice’, even if their ‘real world’ side-effects
cannot be undone.

Exercise 9 (monads and accumulation)
We began this section by observing that Accy o is not a monad. Given Monoid o,
define Accy o as the composition of two monadic idioms.

6 Idioms lifting Monoids

Idioms, IFunctors and Monoids give us the basic building blocks for a lot of routine
programming. Every Idiom i can be used to lift monoids, as follows

instance (Idiom i ,Monoid o)⇒ Monoid (i o) where

∅ = J∅K
xc ⊕ yc = J(⊕) xc yc K

although we shall have to choose individually the idioms i for which we apply
this scheme. If we let IO lift monoids in this way, then we acquire the sequential
composition of commands for the price of the trivial monoid:

instance Monoid () where

∅ = ()
⊕ = ()

Now one of the many specialised types of isum is [IO ()]→ IO (). What does it do?
Well, you know how to traverse a list, you know how to thread input/output, and
you know how to combine (), so what do you think it does?

Which idioms should lift monoids? It would be disconcerting if the defaut ⊕
for [x] were other than ++. Our rule of thumb is to prefer any natural monoid
structure possessed by an idiom, but to lift monoids if no such structure presents
itself. Correspondingly, we allow the environment-threading ‘reader’ to lift monoids
pointwise: this is equivalent to taking

instance Monoid o ⇒ Monoid (s → o) where

∅ = λs → ∅
f ⊕ g = λs → f s ⊕ g s

Pointwise lifting is quite powerful. For a start, it makes the well-known parser type
from (Hutton & Meijer, 1998)

String→ [(x ,String)]

a monoid without further ado.
With a little more effort, we can use lifted Boolean monoids to do testing by the

batch. For example,

12 Conor McBride and Ross Paterson

elemInCommon :: Eq x ⇒ [x]→ [x]→ Bool

elemInCommon xs ys = might ((λx y → Might (x ≡ y)) ‘icrush‘ xs ‘icrush‘ ys)

tests whether two lists have an element in common. The first icrush computes a
batch of tests—one for each x in xs—and combines them disjunctively; the second
icrush applies the combined test to each y in ys and takes the disjunction of the
results. Note that we only structure we require of lists here is IFunctor []. Corre-
spondingly, we could type this function to operate on arbitrary traversible data
structures without changing its code.

One casualty of our choice to let the (→) s idiom lift monoids is the library
choice to make endomorphisms s → s a monoid with respect to id and (·). We
think that wrapping endomorphisms in a newtype is a small price to pay for our
iterable pointwise lifting, especially as id and flip (·) also make endomorphisms a
monoid.

Exercise 10 (fast reverse)
Use the ‘flip (·)’ monoid to define the ‘fast reverse’ function as an icrush on lists.

7 Lost Sheep

We can also take the product of idioms, taking a pair of notions of computation to
a notion of pairs of computations.

data (i � j) x = i x �, j x

instance (Idiom i , Idiom j)⇒ Idiom (i � j) where

ι x = ι x �, ι x
(fi �, fj)~ (si �, sj) = (fi ~ si) �, (fj ~ sj)

7.1 Combining IFunctors

Just drop this? The IFunctor class is closed under the usual mechanisms for con-
structing first-order data structures. Firstly, identity and composition:

instance IFunctor Id where

imap f (An x) = JAn (f x)K

instance (IFunctor g , IFunctor h)⇒ IFunctor (g ◦ h) where

imap f (Comp ghx) = JComp (imap (imap f) ghx)K

8 Idioms and Arrows

To handle situations where monads were inapplicable, Hughes (2000) defined an
interface that he called arrows:

class Arrow () where

arr :: (a → b)→ (a b)
(≫) :: (a b)→ (b c)→ (a c)
first :: (a b)→ ((a, c) (b, c))

Functional pearl 13

These structures include the ordinary function type, Kliesli arrows of monads and
comonads, and much more. Equivalent structures called Freyd-categories had been
independently developed as a device for structuring denotational semantics (Power
& Robinson, 1997).

By fixing the first argument of an arrow type, we obtain an idiom, generalising
the environment idiom we saw earlier:

newtype FixArrow () a b = Fix (a b)

instance Arrow ()⇒ Idiom (FixArrow () a) where

ι x = Fix (arr (const x))
Fix u ~ Fix v = Fix (u4v ≫ arr (λ(f , x)→ f x))

where u4v = arr dup ≫ first u ≫ arr swap≫ first v ≫ arr swap

dup x = (x , x)

In the other direction, each idiom defines an arrow constructor that adds static
information to an existing arrow:

newtype StaticArrow i () a b = Static (i (a b))

instance (Idiom i ,Arrow ())⇒ Arrow (StaticArrow i ()) where

arr f = Static J(arr f)K
Static f ≫ Static g = Static J(≫) f g K
first (Static f) = Static Jfirst f K

To date, most applications of the extra generality provided by arrows over monads
have been of two kinds: various forms of process, in which components may consume
multiple inputs, and computing static properties of components. Indeed one of
Hughes’s motivations was the parsers of Swierstra and Duponcheel (1996). It may
be that idioms will be a convenient replacement for arrows in the second class of
applications.

9 Other definitions of Idioms

The Idiom class features the asymmetrical operation ‘~’, but there are equivalent
symmetrical definitions. For example we could assume the following two constants:

class Liftable i where

unit :: i ()
lift2 :: (a → b → c)→ i a → i b → i c

We can define the combinators of Idiom in terms of those of Liftable:

ι :: Liftable i ⇒ x → i x
ι x = lift2 (const (const x)) unit unit

(~) :: Liftable i ⇒ i (s → t)→ i s → i t

(~) = lift2 id

Conversely, we can define the Liftable interface in terms of Idiom:

14 Conor McBride and Ross Paterson

unit :: Idiom i ⇒ i ()
unit = ι ()

lift2 :: Idiom i ⇒ (a → b → c)→ i a → i b → i c
lift2 f u v = ι f ~ u ~ v

The laws for this form are somewhat complicated, but we can use a more elementary
form:

class Functor i ⇒ MFunctor i where

unit :: i ()
(?) :: i a → i b → i (a, b)

The relationship between the Liftable and MFunctor classes is analogous to the
relationship between zipWith and zip. The Liftable class may defined as

lift2 :: MFunctor i ⇒ (a → b → c)→ i a → i b → i c
lift2 f u v = fmap (uncurry f) (u ? v)

and the Functor and MFunctor classes may be defined using Liftable:

fmap :: Liftable i ⇒ (a → b)→ i a → i b
fmap f u = lift2 (const f) unit u

(?) :: Liftable i ⇒ i a → i b → i (a, b)
u ? v = lift2 (,) u v

The laws of Idiom given in Section 2 are equivalent to the following laws of
MFunctor:

functor identity fmap id = id

functor composition fmap (f · g) = fmap f · fmap g
naturality of ? fmap (f × g) (u ? v) = fmap f u ? fmap g v
left identity fmap snd (unit ? v) = v
right identity fmap fst (u ? unit) = u
associativity fmap assoc (u ? (v ? w)) = (u ? v) ? w

for the functions

(×) :: (a → b)→ (c → d)→ (a, c)→ (b, d)
(f × g) (x , y) = (f x , g y)

assoc :: (a, (b, c))→ ((a, b), c)
assoc (a, (b, c)) = ((a, b), c)

Fans of category theory will recognise the above laws as the properties of a lax
monoidal functor for the monoidal structure given by products. However the functor
composition and naturality equations are actually stronger than their categorical
counterparts. This is because we are working in a higher-order language, in which
function expressions may include variables from the environment, as in the following
definition:

ι :: MFunctor i ⇒ x → i x
ι x = fmap (const x) unit

Exercise 11 (MFunctor and swap)

Functional pearl 15

Use the MFunctor laws and the above definition of ι to prove the equation

fmap swap (ι x ? u) = u ? ι x

for the function

swap :: (a, b)→ (b, a)
swap (a, b) = (b, a)

The proof makes essential use of higher-order functions.

9.1 Strong lax monoidal functors

In the first-order language of category theory, such data flow must be explicitly
plumbed using strong functors, i.e. functors F equipped with a tensorial strength

tAB : A× F B −→ F (A×B)

that makes the following diagrams commute.

1× FA ∼= FA

t

y ∥∥∥∥
F (1×A) ∼= FA

(A×B)× FC ∼= A× (B × FC)∣∣∣∣ yA× t

t

∣∣∣∣ A× F (B × C)y yt

F ((A×B)× C) ∼= F (A× (B × C))

The naturality axiom above then becomes strong naturality : the natural transfor-
mation m corresponding to ‘?’ must also respect the strength:

(A×B)× (FC × FD) ∼= (A× FC)× (B × FD)

(A×B)×m

y yt× t

(A×B)× F (C ×D) F (A× C)× F (B ×D)

t

y ym

F ((A×B)× (C ×D)) ∼= F ((A× C)× (B ×D))

Note that B and FC swap places in the above diagram: strong naturality implies
commutativity with pure computations.

Thus in categorical terms idioms are strong lax monoidal functors. Every strong
monad determines two such functors, as the definition is symmetrical.

10 Conclusions and further work

References

Baars, A.I., Löh, A., & Swierstra, S.D. (2004). Parsing permutation phrases. Journal of
functional programming, 14(6), 635–646.

Barr, Michael, & Wells, Charles. (1984). Toposes, triples and theories. Grundlehren der
Mathematischen Wissenschaften, no. 278. New York: Springer. Chap. 9.

16 Conor McBride and Ross Paterson

Bird, Richard, & Paterson, Ross. (1999). de Bruijn notation as a nested datatype. Journal
of functional programming, 9(1), 77–92.

Fridlender, Daniel, & Indrika, Mia. (2000). Do we need dependent types? Journal of
Functional Programming, 10(4), 409–415.

Hoogendijk, Paul, & Backhouse, Roland. (1997). When do datatypes commute? Pages
242–260 of: Moggi, E., & Rosolini, G. (eds), Category theory and computer science.
LNCS, vol. 1290. Springer.

Hughes, John. (2000). Generalising monads to arrows. Science of computer programming,
37(May), 67–111.

Hutton, Graham, & Meijer, Erik. (1998). Monadic parsing in Haskell. Journal of functional
programming, 8(4), 437–444.

Leijen, Daan, & Meijer, Erik. 1999 (Oct.). Domain specific embedded compilers. 2nd
conference on domain-specific languages (DSL). USENIX, Austin TX, USA. Available
from http://www.cs.uu.nl/people/daan/papers/dsec.ps.

McBride, Conor. (2002). Faking it (simulating dependent types in Haskell). Journal of
functional programming, 12(4& 5), 375–392. Special Issue on Haskell.

McBride, Conor. (2003). First-Order Unification by Structural Recursion. Journal of
functional programming, 13(6).

Meertens, Lambert. 1998 (June). Functor pulling. Workshop on generic programming
(WGP’98).

Peyton Jones, Simon (ed). (2003). Haskell 98 language and libraries: The revised report.
Cambridge University Press.

Power, John, & Robinson, Edmund. (1997). Premonoidal categories and notions of com-
putation. Mathematical structures in computer science, 7(5), 453–468.

Röjemo, Niklas. (1995). Garbage collection and memory efficiency. Ph.D. thesis, Chalmers.

Swierstra, S. Doaitse, & Duponcheel, Luc. (1996). Deterministic, error-correcting combi-
nator parsers. Pages 184–207 of: Launchbury, John, Meijer, Erik, & Sheard, Tim (eds),
Advanced functional programming. LNCS, vol. 1129. Springer.

Wadler, Philip. (1985). How to replace failure by a list of successes. Pages 113–128 of:
Jouannaud, Jean-Pierre (ed), Functional programming languages and computer archi-
tecture. LNCS, vol. 201. Springer.

Solutions to Exercises

Solution 1 (Idioms functorial)
We check that lift1 respects id and (·) as follows:

• lift1 id u = ι id~ u {lift1}
= u {identity}

• lift1 (f · g) u = ι (f · g)~ u {lift1}
= ι (·)~ ι f ~ ι g ~ u {homomorphism}
= ι f ~ (ι g ~ u) {composition}
= lift1 f (lift1 g u) {lift1}

Solution 2 (canonical form)
We proceed in four phases—one for each law:

identity Ensure the expression has form ι f ~s by wrapping u as ι id~u if necessary.

Functional pearl 17

composition Flatten the expression, replacing each right-nested u ~ (v ~ w) with
its left-nested counterpart ι (·)~ u ~ v ~w . Note that this preserves the order of
effects, merely inserting extra pure computations. The expression now has form

ι f ~ is1 ~ . . .~ isn

where some of the is’s are of form ι s for pure s.
interchange Rewrite u ~ ι s to ι (λf → f s)~ u wherever u is not some ι f itself.

Now we have form

ι f ~ ι p1 ~ . . .~ ι pk ~ e1 ~ . . .~ em

where the e’s are the effectful is’s, in order.
homomorphism Collapse the initial segment of the expression, leaving

ι (f p1 . . . pk)~ e1 ~ . . .~ em

as required.

Solution 3 (Coding J . . .K)
Following a similar approach to the definition of the zipWith family in (McBride,
2002), we use a type class trick:

class Idiom i ⇒ Idiomatic i f g | g → f i where

idiomatic :: i f → g

In general, f is a pure function type (possibly of arity 0) and g is somehow the
corresponding version of f in the idiom i . As we process arguments from left to
right, we accumulate a function in the idiom of type i f , from which to compute
the remaining function g . Our ‘open bracket’ just initialises the accumulator with
the pure function given.

iI :: Idiomatic i f g ⇒ f → g
iI f = idiomatic (ι f)

If must consume an argument in i s, the accumulator must be ~-able to it.

instance Idiomatic i f g ⇒ Idiomatic i (s → f) (i s → g) where

idiomatic isf is = idiomatic (isf ~ is)

Meanwhile, our ‘close bracket’ is just the constructor of a datatype, introduced
especially for this purpose:

data Ii = Ii

When we see Ii, we just unload the accumulator!

instance Idiom i ⇒ Idiomatic i x (Ii→ i x) where

idiomatic ix Ii = ix

This notation is quite extensible. Fans of parser combinators may like to add a
symbol Ig, meaning ‘execute the following computation, but ignore its value’.

data Ig= Ig

18 Conor McBride and Ross Paterson

instance Idiomatic i h g ⇒ Idiomatic i h (Ig→ i x → g) where

idiomatic ih Ig ix = idiomatic (ι const~ ih ~ ix)

A simple example of this in action might be:

exp :: Parser (Exp String)
exp = JVal intK
⊕ JVar identK
⊕ JAdd Ig(tok "(") exp Ig(tok "+") exp Ig(tok ")")K

where int, ident and tok t are the parsers for integers, identifiers and the token t ,
respectively.

Solution 4 (the colist Monad)
The join of this list monad takes the diagonal of a ‘matrix’, however far it extends.

join :: [[x]]→ [x]
join [] = []
join ([]

:) = []
join ((x :)

: xss) = x
: join (fmap chop xss) where

chop [] = []
chop (: xs) = xs

Our alternative Monad thus has return = repeat and, as standard,

xs >>= f = join (fmap f xs)

Correspondingly, the ap of this monad generates the matrix of pairwise applications
from a list of functions and a list of arguments, solely for the purpose of taking its
diagonal. Directly implementing zapp is clearly wiser.

Solution 5 (distributing Term and Maybe)
The specialised instance

idist = imap id :: Term (Maybe x)→ Maybe (Term x)

is a kind of ‘occur check’ for the most local de Bruijn variable, Var Nothing, available
for the input term. Either this term does not use its most local variable, in which
case we get Just t for t a term with variables drawn only from x , or we get Nothing.
That is, idist propagates an effectful renaming through its input; that renaming,
id :: Maybe x → Maybe x is seen as the renaming from Maybe x to x which fails if
its input is ever Nothing. The IFunctor behaviour of Maybe ensures that the effectful
renaming is reindexed correctly under a Lda.

The rationalisation of the occur check as a failure-prone renaming is central to
the first author’s structurally recursive first-order unification algorithm (McBride,
2003). In this form, the occur check delivers the witness that a variable has been
successfully eliminated.

Solution 6 (Functor versus IFunctor)

Functional pearl 19

The idea behind imap is to traverse a data structure threading the effects produced
by some operation on elements and combining the results into a single effectful
computation. If the effect being threaded is inherently strict, for example the ‘fail-
ure’ effect coded by the Maybe idiom, then the data traversed must be finite. That
is, if f fails for any element, then imap f should fail, hence imap f must visit every
element before delivering a result. Correspondingly, we need only choose a Functor

which acts as a container for infinitely many elements to make imap unavailable:
(→) Integer will do very nicely.

Let

stateAfter :: TuringMachine→ Integer→ Maybe State

be such that stateAfter tm n returns Just s if Turing Machine tm is still running
and in state s after n steps of execution, and Nothing if tm halts within n steps.
Then

imap (stateAfter tm) id

must return Nothing if tm halts for any number of steps in the range of id::Integer→
Integer.

Solution 7 (every Ord induces a Monoid)
Every instance of Ord induces a Monoid via its max operation, provided we have a
bottom element to act as the ∅—we can always add such a thing:

data Pointed x = Bottom | Embedded x

instance Ord x ⇒ Ord (Pointed x) where

compare Bottom Bottom = EQ

compare Bottom (Embedded y) = LT

compare (Embedded x) Bottom = GT

compare (Embedded x) (Embedded y) = compare x y

instance Ord x ⇒ Monoid (Pointed x) where

∅ = Bottom

(⊕) = max

Of course, we can also get the ‘minimum’ monoid by adding a top element.

Solution 8 (adverbial programming)
The adverbial style includes the constructor of a newtype but omits the projection.
Accordingly, let us overload the latter

class Unpack p u | p → u where

unpack :: p → u

For each of our newtypes, let us take unpack to be the projection:

instance Unpack (Accy o x) o where

unpack = acc

and so on.
Now we may define

20 Conor McBride and Ross Paterson

ily :: Unpack p′ u ′ ⇒ (u → p)→ ((t → p)→ t ′ → p′)→
(t → u)→ t ′ → u ′

ily pack transform f = unpack · transform (pack · f)

Solution 9 (monads and accumulation)
It is well established that the effect of ‘writing’ to a monoid is monadic, with return

writing ∅ and join combining the effects with ⊕. For the standard Monad interface,
this yields

instance Monoid o ⇒ Monad ((,) o) where

return x = (∅, x)
(o1, s) >>= f = (o1 ⊕ o2, t) where

(o2, t) = f s

It is less well established—but nonetheless trivial—that the constant singleton

data Unit x = Void

is monadic.
We may take Accy o to be the type constructor which throws away its argument

but delivers an o, as follows:

type Accy o = ((,) o) ◦ Unit

The idiom resulting from this composition of monads behaves just like the one we
defined directly.

Solution 10 (fast reverse)
Let us have

newtype EndoOp x = OpEndo{opEndo :: x → x }

instance Monoida EndoOp where

∅ = OpEndo id

OpEndo f ⊕ OpEndo g = g · f

Now recall that (:) takes an element to an endofunction on lists!

rev :: [x]→ [x]
rev xs = (OpEndo‘ily‘) icrush (:) xs []

Solution 11 (MFunctor and swap)
We have that

ι x = fmap (const x) unit

Hence

fmap swap (ι x ? u) = fmap swap (fmap (const x) unit ? u) {iii}
= fmap swap (fmap (const x) unit ? fmap id u) {functor identity}
= fmap swap (fmap (const x × id) (unit ? u)) {naturality of ?}
= fmap (swap · (const x × id)) (unit ? u) {functor composition}

