Let’s see how things unfold:
reconciling the infinite with the intensional
(extended abstract)

Conor McBride

University of Strathclyde

1 Introduction

Coinductive types model infinite structures unfolded on demand, like politi-
cians’ excuses: for each attack, there is a defence but no likelihood of resolution.
Representing such evolving processes coinductively is often more attractive than
representing them as functions from a set of permitted observations, such as pro-
jections or finite approximants, as it can be tricky to ensure that observations are
meaningful and consistent. As programmers and reasoners, we need coinductive
definitions in our toolbox, equipped with appropriate computational and logical
machinery.

Lazy functional languages like HASKELL [18] exploit call-by-need computa-
tion to over-approximate the programming toolkit for coinductive data: in a
sense, all data is coinductive and delivered on demand, or not at all if the pro-
grammer has failed to ensure the productivity of a program.

Tatsuya Hagino pioneered a more precise approach, separating initial data
from final codata [10]. The corresponding discipline of ‘coprogramming’ is given
expression in Cockett’s work on CHARITY [5,6] and in the work of Turner and
Telford on ‘Elementary Strong Functional Programming’ [22, 21, 23]. Crucially,
all distinguish recursion (structurally decreasing on input) from corecursion
(structurally increasing in output). As a total programmer, I am often asked
‘how do I implement a server as a program in your terminating language?’, and
I reply that I do not: a server is a coprogram in a language guaranteeing liveness.

To combine programming and reasoning, or just to program with greater pre-
cision, we might look to the proof assistants and functional languages based on
intensional type theories, which are now the workhorses of formalized mathemat-
ics and metatheory, and the mainspring of innovation in typed programming [16,
4,14]. But we are in for a nasty shock if we do. Coinduction in CoQ is broken:
computation does not preserve type. Coinduction in AGDA is weak: dependent
observations are disallowed, so whilst we can unfold a process, we cannot see
that it yields its unfolding.

At the heart of the problem is equality. Intensional type theories distinguish
two notions of equality: the typing rules identify types and values according to
an equality judgment, decided mechanically during typechecking; meanwhile, we
can express equational propositions as types whose inhabitants (if we can find
them) justify the substitution of like for like.

In neither COQ nor AGDA is a coprogram judgmentally equal to its unfolding,
hence the failure in the former. That is not just bad luck: in this presentation, I
check that it is impossible for any decidable equality to admit unfolding.

Moreover, neither system admits a substitutive propositional equality which
identifies bisimilar processes, without losing the basic computational necessity
that closed expressions compute to canonical values [13]. That is just bad luck:
in this presentation, I show how to construct such a notion of equality, following
earlier joint work with Altenkirch on observational equality for functions [2].

The key technical ingredient is the notion of ‘interaction structure’ due to
Hancock and Setzer [11] — a generic treatment of indexed coinductive datatypes,
which I show here to be closed under its own notion of bisimulation. This treat-
ment is ready to be implemented in a new version of the EPIGRAM system.

Equipped with a substitutive propositional equality that includes bisimu-
lation, we can rederive CoQ’s dependent observation for codata from AGDA’s
simpler coalgebraic presentation, whilst ensuring that what types we have, we
hold. Let’s see how things unfold.

2 The Problem

Eduardo Giménez pioneered CoQ’s treatment of coinduction [7]. It was a great
step forward in its time, giving Coq access to many new application domains.
Giménez was aware of the problem with type preservation, giving a counterex-
ample in his doctoral thesis [8]. The problem did not become particularly widely
known until recently, when Nicolas Oury broke an overenthusiastic early version
of coinduction in AGDA, then backported his toxic program to CoQ, resulting
in a flurry of activity on mailing lists which has not yet entirely subsided.

Presented with a categorical flavour, COQ’s treatment is essentially thus: for
any given strictly positive functor F' : Set — Set, we acquire a coinductive set v F’
equipped with a coconstructor and a coiterator (or ‘unfold’, or ‘anamorphism’)
which grows vF' values on demand by successive applications of a coalgebra to
a ‘seed’ of arbitrary type. Keeping polymorphism implicit, we obtain:

vF : Set
inp: F(vF) —vF
coitp : (S—FS)— S —vF

Of course, CoQ actually provides a much richer notation for coprograms than
just coitg, but a streamlined presentation will help to expose the problem.

For the standard example of coinductive lists, this specializes (modulo high
school algebra) to the traditional pair of coconstructors and unfold.

Colistx : Set
nilx : Colistx
consy : X — Colistxy — ColListx
unfoldx : (S = 1+ X xS) — S — Colistx

For a given seed s : S, the unfoldx coalgebra may deliver a value inl () from the
left summand to construct nilx, or some inr(x, s’) to construct a consx with head
z and a tail grown on demand from seed s’. For a standard example, construct
the infinite sequence of natural numbers, starting from a given counter:

natsFromn +— unfoldy (An — inr (n,n+1)) n

The corresponding elimination behaviour is dependent case analysis, not
merely branching according to a coconstructor choice, but seeing every value
as an unfolding to a coconstructor. I write (z:S5) — T for dependent function
spaces with explicit application. In general and particular, we acquire:

casep : (P:vF—Set) — ((t:F (vF)) — P(inpt)) — (z:vF)— Px

caseColisty : (P:ColListx — Set) —
Pnilx —
((x:X) — (xzs:Colistx) — P (consx x xs)) —
(zs:Colistx) — P xs

We may readily recover the destructor — the terminal coalgebra — as a
degenerate case analysis:

outp : vF — F (VF)
outp = casep (A_+— vF) (At — t)

Writing F' — for the functorial action on functions, we can readily see that
coitp (F outr) does the same job as ing, but the latter is not redundant, as it is
needed to form the type of casep.

Intensional type theories are computational — if we test a ColList for empti-
ness, we should certainly receive true or false. It is thus vital to animate case
analysis with operational behaviour. Moreover, whatever we choose will play a
key role in the type system. Judgmental equality, which I write =, is given in
CoQ as the congruence and equivalence closure of reduction, ~». Decidable type-
checking thus rests on terminating reduction. We take care to coiterate only on
demand from case analysis, hence finitely often. CoQ computes as follows (but
what is the type of the term in the box?)

caserp Pp (inpt) ~pt
caser P p (coitp f s) ~ ’p (F (coitg f) (f s)) ‘

In the special case of Colist, computing the application of coalgebra to seed
delivers a value for p s which decides whether the resulting ColList is a nilx to be
replaced by n or a consx to be replaced by c. (Again, typecheck the boxes.)

caseColistx P ncnily ~n
caseColistxy Pnc(consy x xs) ~ cx xs
n if ps~*inl()

cx (unfoldp s’) | if p s ~* inr(x,s')

caseColisty P n ¢ (unfoldx p s) ~ {

Here inl and inr are injections to the sum 14 X xS directing coconstructor choice.
Coiteration on demand rules out spontaneous unfolding

coity f s 7 inp (F (coitr f) (f 5))

unfoldx ps 7 {consX z (unfoldx p s’) if ps~*inr (z,s)

preventing infinite regress. Ipso facto, the corresponding judgmental equations
do not hold: the reducts shown in boxes above conspicuously fail to share the
types of the redices from which they spring. Let us check:

caser P p (coitp fs) ~ p(F (coitp f) (f s))

P (coitr f5) # P (ing (F (coits f) (f 5)))

Preservation of typing fails precisely because we do not dare compute with laws
which we should prefer somehow to hold.

Where does this problem bite? In fact, we can construct a bogus proof of
exactly the missing equation, via the standard intensional propositional equality:

—=—:X — X — Prop
refl :(x:X)—oax=2x

According to the types of our components, we may check that

caser (Az — z = inp (F (coitr f) (f 5)))
(At refl (inp t))
(coitp f s)

:coitp fs=ing (F (coitg f) (f s))

but this proof computes in one step to

refl (ing (F' (coitp f) (f s))) 7/ coitp fs=inp (F (coitr f) (f s))

Indeed, this propositional equality has the canonicity property, so in the
empty context, all proofs must compute to some refl ¢, making propositional
equality correspond exactly to judgmental equality and thus intensional. Indeed,
this intensionality allows us to define predicates which invalidate dependent case
analysis for codata — there are predicates which hold for coconstructed codata
but do not hold universally. It should not be possible to prove that a coiteration
is intensionally equal to the corresponding coconstruction, just as one cannot
prove intensional equality of these implementations of the identity on N:

An—n A0 — 0
[n+1—n+1

As so often in type theory, the problem is the struggle for equality.

3 Type Equality versus Reduction

The trade in labour between the judgments for equality and type inhabitation is
a crucial aspect of intensional type theories. We expect I' - — : T to be checkable
only for specific candidate terms — inhabitation requires evidence. However, we
keep I' = s =t : T decidable, and we take advantage by admitting the rule

I'ks: S I'ES=T:Set
I'ks:T

If T is a complex type which simplifies mechanically to some trivial type S, then
a trivial inhabitant will suffice. As we are free to program in types, we are in
a position to shift work from humans to machines, making developments like
Gonthier’s proof of the Four Colour Theorem tractable [9].

Within the bounds of decidability, and hopefully also good taste, we are free
to question whether = should be exactly the equivalence and congruence closure
of ~, or whether it might be a little more generous. With care, a type-directed
test for = can be made to admit rules like

INiz: Sk fa=gx: Tl 'ru:1 I'ko:l
I'-f=g:(z:8)—-T I'ru=w:1l

which are rather more difficult to capture by rewriting alone.
We now face a temptation. Even though coity must expand only on demand,

coity fs o4 inp (F (coitp f) (f s))

might we not consider an equality test to be such a demand? When testing an
equation, we could unfold coiteration on one side while we have coconstructors
on the other, effectively adding the rule

I't F (coitp f) (fs)=t: F (vF)
I'kcoitp fs=inpt:vF

We can safely delay such unfoldings until we are comparing normal forms, as
computation will unfold coiteration in redices anyway. Following this strategy,
we arrive at a terminating test which is sound with respect to our extended =
and which fixes our type error. It looks like we have won!

I used to advocate this approach, but I record it now only to spare others
the embarrassment of falling for its charms. No such test can be complete if =
is transitive. To see this, consider an automaton (a Turing machine perhaps)
specified by a transition function of type a : S — 1+ S indicating whether the
automaton halts or evolves to a new state. We may construct a coalgebra tick a
for bitstreams in v(2x) with carrier 1+ S as follows

ticka : 145 —2x(145)
ticka — X (inl () — (true,inl ())
| (inr 5) — (true,as)

Now ask whether an automaton which has not yet halted ticks the same as
one which has halted already:

coitox (tick @) (inrs) = coitax (tick a) (inl ()) ?

If the former ever halts, starting from s, then it is testably equal to a sufficiently
large unfolding of form

inax (true,ingy (true,...ingy (true, coitay (tick a) (inl ()))...))

which is clearly also an unfolding of the latter. By transitivity, a complete de-
cision procedure for = must find the intermediate value for itself, effectively
solving the halting problem. Hence it does not exist. We cannot hope to repair
CoQ’s problem by augmenting the judgmental equality.

4 Weakly Final Coalgebras: a Principled Retreat

Inasmuch as dependent case analysis is not really justified by the intensional
behaviour of codata — an uncomputed coiteration is not given by a coconstruc-
tor, even if there is no means to observe the difference within the theory — the
principled thing to do is to throw out dependent case analysis, retaining only
the nondependent observation.

We arrive at the following cut-down presentation, long advocated by Anton
Setzer as closer to the destructor-based, coalgebraic intutition behind coinductive
sets, and corresponding quite closely to the position implemented in AGDA [15,
19,19, 20]. For suitable strictly positive functors F, we obtain

vF : Set
outp : vF — F (VF)
coitp : VS.(S — FS) —» S - vF

outp (coitg fs) ~ F (coitg f) (f s)

We can restore something like the coconstructor, taking in’. — coitr (Foutr)
for which computation and definitional expansion give us, judgmentally, that
outr (inzt) = Finz (Foutgt) which is perhaps less than desirable, but at least
believable. Pragmatically, AGDA adds ing directly, with the more immediate
decomposition behaviour

outg (inpt) ~ t

but this does not mitigate the main problem with this presentation: outy is only
a weakly final coalgebra. We are guaranteed that coitg f is a solution of

outr (gs)=Fg(fs)

but it is not unique. Consider g + in’m - F (coitr f) - f and observe that, even
with only the pointwise propositional reasoning that intensional type theories

admit,

outg(g s)

= {definition}
outp((in - F (coitp f) - f) s)

= {applied composition}
outp (inf (F' (coitp f) (f 5)))

= {computation on demand}
F ian (F outp (F (COitF f) (f S)))

= {F functorial}
F (in’z - outp - coity f) (f 5)

= {computation on demand}
F (inp - F (coitp f)- f) (f s)

= {definition}
Fg(fs)

However, we cannot prove that g = coity f, or even that they are pointwise
equal. The best we can do is to define an ad hoc notion of bisimulation and show
that both functions are pointwise bisimilar. We cannot treat bisimulation as a
congruence and presume that all predicates respect it for the very good reason
that they do not — the intensional equality is again a key counterexample.

This approach is in keeping with the standard properties and difficulties
of intensional type theories. On the one hand, we have restored the fact that
computation preserves type. On the other hand, we are forced to reason at
an intensional level, just as we already are with functions. Functions, too, are
equipped with only non-dependent elimination behaviour: application allows us
to use functions but not to inspect or standardize their construction. Just as we
are free to reason dependently about the result of a function application, so we
may reason about the result of outrg by whatever means F' supports, but the
construction of elements of vF' remains inscrutable.

5 O for an Observational Propositional Equality!

Earlier, we noted that an unjustified dependent case analysis principle gave rise
to a bogus intensional equation between codata which were merely bisimilar. As
it happens, we turn that fact on its head and derive dependent case analysis
from a bisimulation.

Let us start from the safe, non-dependent presentation of codata given in the
previous section. Suppose we could find a notion of equality, ~, say, reflexive
and substitutive at each set X

refly : (z:X) »x ~x x
substy : Vz,y.x ~x y — (P: X —Set) - Pz — Py

for which we were able to show

iop : (x:vF) —inp (outp x) ~yp o

We might then construct a general dependent case analysis operator from
the destructor outg.

casep : (P:vF—Set) — ((t:F (vF)) — P (inpt)) — (z:vF)— Pz

casep Ppx — subst,p (ing (outp x)) x (iop z) P (p (outp x))
If, moreover, we are lucky enough to have that for any ¢ : z ~x x
substx g Pp = p
then computing outy gives us that the following hold judgmentally:

casep Pp (inpt) =pt
caser P p (coitp f s) = subst,p (iop (coitp f s)) P (p (F (coitg f) (f s)))

These equations correspond almost exactly to the computation rules in the CoQ
presentation, but the type error in the coiteration case is repaired by explicit
appeal to subst, g. If only we had an observational propositional equality, substi-
tutive for bisimulation, then we should recover the uniqueness of coity f propo-
sitionally, although it cannot be unique with respect to the judgmental equality
=. But is this a tall order? I claim not.

6 Observational Equality

Let me sketch how to construct a propositional equality with the desired prop-
erties, extending earlier joint work with Altenkirch and Swierstra [2]. The ma-
chinery is quite intricate, but most of the choices are forced by the setup.

Start from a type theory equipped at least with 0, 1, dependent function
types (z:S5) — T, and dependent pair types (x:S) x T, but perhaps including
sums and inductive types. Now introduce a propositional subuniverse of Set,
with a ‘decoder’ mapping each proposition to the set of its proofs.

Prop : Set [-] : Prop — Set
closed under falsity, truth, conjunction, and universal quantification over sets.

[L] ~ 0

[[T]] ~ 1

[PAQ] ~ [P] x[Q]
[Vz:S. P] ~ (z:8) — [P]

We may define implication, P = @), as a degenerate universal quantification,
V_:[P]. Q, recovering [P = Q] ~ [P] — [Q]-

Next, we may introduce equality for sets and values, not as inductive defini-
tions, but rather computing recursively over the structure of types and values.

S, T : Set s: S t:. T
ST : Prop (s:8)~(¢t:T) : Prop

Intuitively, S <= T means that there are structural coercions between S and 7.
The heterogeneous value equality is a little more subtle: (s:S5)~(¢:T) indicates
that s and ¢ are interchangeable if S «>T. The intended elimination behaviour
helps to motivate the construction: every equation on sets induces a coherent
coercion between them

coe: (S,T:Set) - ST — S —T
coh: (S,T:Set) = (Q:S~T) — (5:5) = (5:5)~(coe ST Q s:T)

We can transport values between equal sets, and the result remains equal, even
though its type may have changed! Correspondingly, set equality must be con-
structed to ensure that coe can be computed. Meanwhile, value equality should
be constructed consistently to reflect the construction of data and the observa-
tions on codata.

Set equality follows the structure of sets, yielding L for distinct set-formers,
and componentwise equations when the set-formers coincide.

0«0 ~ T

11 ~ T
(:8)=T « (/:8) =T ~ "8 ANV2": 5 Ve:S. (¢/:8)~=(x:5) =TT
(x:S)XT & (2/:8)XT" ~ S8 AVe: S V' 8 (x:9)~(2":8) =TT

The orientation of the equality for the domain component of function and pair
types reflects their contra- and co-variance, respectively. The definition of coe
follows the same structure, exploiting 0-elimination when the types do not match,
and componentwise coercion in the appropriate direction when they do.

coe 0 0 Qxr~x
coe 1 1 Qzr~=x
coe ((z:5)—=T) ((":8)—=T")Q f ~ Az’ let & +— coe§' S (fst Q) 2’
q HCOhS/S(fStQ).T/
Q —sndQx' zq
in coeTT' Q' (f x)
coe ((z:S)xT) ((':8)xT") Qp~letx —fstp
z' —coeS S (fstQ)z
q —cohSS (fstQ)x
Q' —sndQzxxq
in (2',coeTT' Q' (sndp))

Note how the coherence guarantee from the domain coercion is always exactly
what we need to establish the equality of the codomains. To extend coercion
to datatypes, exploit that fact that provably equal datatypes have the same
constructors and provably equal component types to build a function recursively
mapping each constructor to itself.

Crucially, coe computes lazily in the proof @ unless the equation is conspic-
uously absurd. It is this laziness which buys us our freedom to design the value
equality observationally: as long as we ensure that [L1] remains uninhabited,
coe must always make progress transporting canonical values between canoni-
cal types. Moreover, we are free to add whatever propositional axioms we like,
provided we retain consistency. Correspondingly, we may take coh as axiomatic,
along with

refl VX, [Vo: X. (z: X)~(2: X)]
Resp : VX. (P: X —Set) — [Va: X. Vy: X. (2: X)~(y: X) = Pz < Py]

The latter allows us to recover subst from coe.

We can take value equality to be anything we like for types with distinct
constructors — it is meaningful only when the types match. For like types, we
must be more careful:

(2:0) ~ (y:0) ~ T
(z:1) ~ (y:1) ~ T
(f:(z:9)—=T) = (f":(2':8)—=T") ~ Va: 5. Va': 5.

(:8)~(z":8") = (fz:T)~(f 2":T")
(p:(x:8)xT) ~ (p':(2/:S)xT") ~letax —fstp ; y —sndp
' —fstp'; vy —sndp
in (z:8)=@":S)A(y:T)=(y:T")

2

As you can see, equality for pairs is componentwise and equality for functions
is extensional. The coup de grace is that with some care, we can ensure that

coe X XQx ==«

holds, not by adding a nonlinear reduction rule, but just by extending the way
in which normal forms are compared after evaluation — a detailed treatment is
given in our paper [2]. This summarizes the basic machinery for observational
equality. Let us now add codata, and show that we may indeed take the z ~x y
we seek to be the homogeneous special case of our value equality (z:X)~(y:X).

7 Interaction Structures Closed Under Bisimulation

Peter Hancock and Anton Setzer define a notion of interaction structure corre-
sponding to potentially infinite trees of traces in a state-dependent command-
response dialogue [11,12]. We may introduce a new type constructor for such
structures in general, parametrized by a protocol as follows:

[0 (S : Set) states of the system
(C: S — Set) commands for each state
(R:(s:5) — Cs — Set) responses for each command
(n:(s:5) = (c:Cs)— Rsc—S) new state from each response

: S — Set traces from each state

Interaction structures are the coinductive counterpart of Petersson-Synek
trees [17]. The parameters C, R, and n characterize the strictly positive endo-
functors on the category S — Set of S-indexed sets with index-preserving maps.
These are exactly the indexed containers [1,3]

[S,C,R,n] : (S—Set) — (S— Set)
[S,C,;R,n] X s — (c:Cs)x(r:Recs)— X (nscr)

with action on morphisms defined by
[S,C,R,n| f — As. Au. (fstu, fs-sndu)
Now, (I0 S C Rn,out) is the terminal [S, C, r, n]-coalgebra. That is, we take

outs.c.rn ¢ (s:5) =10SCRns—[S,C,R,n](I0SCRn)s
coitgcrn : VX. ((s:5) > Xs—[S,C,R,n] X s) —
((s:8) = Xs—=I10SCRns)

outs,.c,rn (Coitscrm fsx) ~ [S,C,R,n| fs(fsx)

and we may add
inscrn @ (s:8)—[S,C,R,n](I0OSCRn)s—10SCRns
outs,.c,rn (iNs,c.Rn St) ~ ¢

Markus Michelbrink and Anton Setzer have shown that [S, C, R, n] has a final
coalgebra [15]. For our purposes, however, we must now choose answers to three
additional questions:

1. When are two 10 sets provably equal? When their parameters are provably
pointwise equal.

2. How can we transport codata between provably equal 10 structures? By a
‘device driver’ coiteration which translates commands one way and responses
the other, exploiting the equality of command and response sets.

3. When are 10 values provably equal? When they are bisimilar.

Fleshing out the first two answers is largely mechanical, although some care
must be taken with the precise computational details. For the third, we need
to ensure that our universe Prop is capable of expressing bisimulations. Corre-
spondingly, let us extend Prop with coinductive predicates, generally.

HAP (S : Set) states of the system
(H:S — Prop) happiness in each state
(R :(s:5) — [H s] — Set) responses to happiness
(n :(s:8)— (h:[Hs]) = Rsh—15) new state from each response
: S — Prop happiness from each state on

The predicate HAP S H Rn is parametrized by a predicate H which indicates
happiness with a current state drawn from S and a pair R,n indicating how

states may evolve when we are happy: HAP S H R n s then holds for any state s
whenceforth eternal happiness is assured. It is easy to interpret these propositions
as coinductive sets of proofs:

[HAPSHRns] ~ 105 (As.[Hs])Rns

We may now define value equality for 10 processes as a kind of happiness
corresponding to bisimilarity — I precede each component with its motivation:

(p:I0OSCRns)~(p':105" C'"R'n's") ~
HAP — we consider two processes, each in its own state
(((s:8)xI0SC Rns) x ((s:5)x105 C"R'n' s"))
— we are happy now if they issue equal commands
(A((5.p), (',2)).
let ¢ +— fst (outp) ; ¢ +— fst (outp’)
in (c:Cs)~(d:C"s"))
— we need to stay happy whenever they receive equal responses
(A((5.), (',))- A
let ¢ — fst (out p) ; ¢ +— fst (outp’)
in (rrRse)x (r":R' s)x[(r:iRsc)~(r":R' s)])
— each process evolves according to its own protocol
(A((5,p)s (5',0)): A AT, 17,).
let ¢ — fst (out p) ; ¢ +— fst (outp’)
u+ snd (out p) ; «' +— snd (outp’)
in (nscryur),(n s ur")))
— and we start from the processes at hand

((s;p), (s',p"))

We may now establish that
(ins,c,rn s (outsc,rm sp):10SCRns)~(p:10SC Rns)

by a coiterative proof of bisimilarity. We may similarly establish that coits .c, r.n f
is the unique solution of its defining equation, up to ~, again by coiteration. By
generalising our treatment of codata to the indexed case, we effectively closed
coinductive types under observational equality, re-using the same |O structures
with a suitably enriched notion of state. This pleasing uniformity is rather to be
expected when starting from such an expressive class of definitions.

8 Epilogue

If we want to reason about coprograms in intuitive way, we need a substitu-
tive equality which includes bisimilarity. Equivalently, we need a dependent case
analysis to see how things unfold. We have seen why the latter leads to the failure
of type preservation in COQ and that there is no chance to fix this problem by
strengthening the judgmental equality. We have also seen how to construct an

observational propositional equality which amounts to extensionality for func-
tions and bisimilarity for coinductive values, giving rise to a structural coercion
between equal sets. By explicit appeal to this observational equality, we can
restore the type safety of dependent case analysis for codata.

As proof of concept, I have constructed in AGDA a small universe of sets
and propositions containing interaction structures and observational equality,
equipped with coercion as described above. This development will inform a new
treatment of codata in the next version of EPIGRAM, corresponding directly to
the categorical notion of terminal coalgebra, and with bisimulation substutive
in all contexts.

A curious consequence of this choice is that predicates of intensional stamp,
like inductively defined equality, must be ruthlessly excised from the type theory.
If a predicate holds for one implementation but not another, it can hardly respect
observational equality. As we reason, so we must define — up to observation. It
as almost as if a greater fidelity to abstract, extensional mathematics is being
forced upon us, whether we like it or not. Not only can we express coalgebraic
and algebraic structure precisely in dependent type theories, but increasingly,
we must. ‘Category theory working, for the programmer’ is becoming a viable
prospect and a vital prospectus.

Acknowledgements

I should like to thank Nicolas Oury for showing me this problem, Alexander
Kurz for his patience with my laziness, and Peter Hancock for provocation.

References

1. Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers - constructing
strictly positive types. Theoretical Computer Science, 342:3-27, September 2005.
Applied Semantics: Selected Topics.

2. Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equal-
ity, now! In Aaron Stump and Hongwei Xi, editors, PLPV, pages 57-68. ACM,
2007.

3. Thorsten Altenkirch and Peter Morris. Indexed Containers. In Proceedings of
LICS, 2009.

4. Yves Bertot and Pierre Castéran. Interactive Theorem Proving And Program De-
velopment: Coq’Art: the Calculus of Inductive Constructions. Springer, 2004.

5. Robin Cockett and Tom Fukushima. About Charity. Yellow Series Report No.
92/480/18, Department of Computer Science, The University of Calgary, June
1992.

6. Robin Cockett and Dwight Spencer. Strong categorical datatypes I. In R. A. G.
Seely, editor, International Meeting on Category Theory 1991, Canadian Mathe-
matical Society Proceedings. AMS, 1992.

7. Eduardo Giménez. Codifying guarded definitions with recursive schemes. In Peter
Dybjer, Bengt Nordstrém, and Jan M. Smith, editors, TYPES, volume 996 of
Lecture Notes in Computer Science, pages 39-59. Springer, 1994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23

Eduardo Giménez. Un Calcul de Constructions Infinies et son application a la
vérification de systémes communicants. PhD thesis, Ecole Normale Supérieure de
Lyon, 1996.

Georges Gonthier. A computer-checked proof of the Four-Colour theorem. Tech-
nical report, Microsoft Research, 2005.

Tatsuya Hagino. A Categorical Programming Language. PhD thesis, Laboratory
for Foundations of Computer Science, University of Edinburgh, 1987.

Peter Hancock and Anton Setzer. Interactive programs in dependent type theory.
In Peter Clote and Helmut Schwichtenberg, editors, CSL, volume 1862 of Lecture
Notes in Computer Science, pages 317-331. Springer, 2000.

Peter Hancock and Anton Setzer. Interactive programs and weakly final coalgebras
in dependent type theory. In L. Crosilla and P. Schuster, editors, From Sets and
Types to Topology and Analysis. Towards Practicable Foundations for Constructive
Mathematics, pages 115 — 134, Oxford, 2005. Clarendon Press.

Martin Hofmann. Extensional concepts in intensional type theory. PhD thesis, Lab-
oratory for Foundations of Computer Science, University of Edinburgh, 1995. Avail-
able from http://www.lfcs.informatics.ed.ac.uk/reports/95/ECS-LFCS-95-327/.
Conor McBride and James McKinna. The view from the left. Journal of Functional
Programming, 14(1):69-111, 2004.

Markus Michelbrink and Anton Setzer. State dependent IO-monads in type theory.
Electronic Notes in Theoretical Computer Science, 122:127 — 146, 2005.

Ulf Norell. Towards a Practical Programming Language based on Dependent Type
Theory. PhD thesis, Chalmers University of Technology, 2007.

Kent Petersson and Dan Synek. A set constructor for inductive sets in martin-
16f’s type theory. In David H. Pitt, David E. Rydeheard, Peter Dybjer, Andrew M.
Pitts, and Axel Poigné, editors, Category Theory and Computer Science, volume
389 of Lecture Notes in Computer Science, pages 128-140. Springer, 1989.

Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, 2003.

Anton Setzer. Guarded recursion in dependent type theory. Talk at Agda Imple-
mentors’ Meeting 6, Géteborg, Sweden, May 2007.

Anton Setzer. Coalgebras in dependent type theory. Talk at Agda Intensive Meet-
ing 9, Sendai, Japan, November 2008.

Alastair Telford and David Turner. Ensuring streams flow. In Michael Johnson,
editor, AMAST, volume 1349 of Lecture Notes in Computer Science, pages 509—
523. Springer, 1997.

D. A. Turner. Elementary strong functional programming. In Pieter H. Hartel and
Marinus J. Plasmeijer, editors, FPLE, volume 1022 of Lecture Notes in Computer
Science, pages 1-13. Springer, 1995.

D. A. Turner. Total functional programming. J. UCS, 10(7):751-768, 2004.

