
Indexed Containers

Thorsten Altenkirch1, Neil Ghani1, Peter Hancock1, Conor McBride1, and
Peter Morris1

School of Computer Science and Information Technology,
Nottingham University

{txa,nxg,pgh,ctm,pwm}@cs.nott.ac.uk

Abstract. The search for an expressive calculus of datatypes in which
canonical algorithms can be easily written and proven correct has proved
to be an enduring challenge to the theoretical computer science commu-
nity. Approaches such as polynomial types, strictly positive types and
inductive types have all met with some success but they tend not to
cover important examples such as types with variable binding, types
with constraints, nested types, dependent types etc.

In order to compute with such types, we generalise from the traditional
treatment of types as free standing entities to families of types which
have some form of indexing. The hallmark of such indexed types is that
one must usually compute not with an individual type in the family, but
rather with the whole family simultaneously. We implement this simple
idea by generalising our previous work on containers to what we call
indexed containers and show that they cover a number of sophisticated
datatypes and, indeed, other computationally interesting structures such
as the refinement calculus and interaction structures. Finally, and rather
surprisingly, the extra structure inherent in indexed containers simplifies
the theory of containers and thereby allows for a much richer and more
expressive calculus.

1 Introduction

Why Indexed Containers? The search for an expressive calculus of datatypes
in which canonical algorithms can be easily written and proven correct has
proved to be an enduring challenge to the theoretical computer science com-
munity. Ideally we want a calculus of datatypes which allows generic algorithms
such as searching, traversal and differentiation to be written. This calculus should
cover as many examples of datatypes as possible so that the generic algorithms
can be applied widely, but should exclude types such as µX.(X → 2)→ 2 which
do not support such algorithms. Approaches such as polynomial types, strictly
positive types and inductive types have all met with much success but they tend
not to cover important examples such as types with variable binding, types with
constraints, nested types, dependent types etc.



In previous work, we introduced the concept of containers ([3], [4], and [2])
as a theory of datatypes based upon the metaphor that datatypes consist of
shapes and positions where data can be stored — pathological examples such
µX.(X → 2) → 2 are therefore excluded. Consequently, the large number of
algorithms whose essence is the manipulation of shapes and positions can be
uniformly written for containers. Examples of such algorithms are traversal,
searching and differentiation. Unfortunately, while delivering generic algorithms,
containers suffer from the same problem of limited expressivity as strictly posi-
tive types etc.

This paper seeks to address this problem by generalising the traditional treat-
ment of types as free standing entities to families of types which have some form
of indexing. To understand this idea, consider the inductive type List(X) of lists
of X. It is clear that the definition of List(X) does not require an understanding
of List(Y ) for for any Y 6= X. Since each instance List(X) is, in isolation, an
inductive type we consider List to be a family of inductive types. In contrast,
consider the following definition of the Nat-indexed type Fin[n] of finite sets

0 : Fin[n + 1] x : Fin[n]
S(x) : Fin[n + 1]

Similarly one could consider the Nat-indexed type Lam(n) of λ-terms [19, 8, 13]
by means of the following introduction rules.

i : Fin[n]
Var(i) : Lam[n]

f : Lam[n] a : Lam[n]
App(f, a) : Lam[n]

b : Lam[n + 1]
Abs(b) : Lam[n]

Here, the type Lam[n] consists of untyped λ-terms up to α-equivalence with free
variables drawn from {Var(0), . . . ,Var(n− 1) }. Note that in Abs(b), the bound
variable is Var(0). The key point in both of these examples is that, unlike the
case with lists, the type Fin[n] and the type Lam[n] cannot be defined in isola-
tion with recourse only to the elements of Fin[n] and Lam[n] that have already
been built. Rather we need elements of the type Fin[n] to build elements of
Fin[n + 1] and, similarly, elements of the type Lam[n + 1] to build elements of
the type Lam[n]. In effect, the Nat-indexed families Fin[n] and Lam[n] have to
be inductively built up simultaneously for every n and thus we have an inductive
family of types rather than a family of inductive types.

These kinds of indexed datatypes are becoming increasingly important. Of course,
one can define them in a dependently typed programming language or they can
be approximated using nested types or GADTs in Haskell. However, these ap-
proaches by themselves do not highlight the shapes and positions metaphor
which, as remarked above, is crucial for defining many generic algorithms. Thus
it is natural to try to combine the shapes and positions metaphor of containers
with the expressivity of indexed families of datatypes. Such indexed containers
consist of containers with additional indexing information detailing the the in-
dexes that each shape can target, and for each input position indication of how



the input’s type should be indexed, which index a piece of data to be stored there
must come from. As we will comment on later, indexed containers are a serious
candidate to be used as the theory of datatypes in the programming language
Epigram. We hasten to add that these indexed containers have been previously
studied by Hyland and Gambino [20] under the name of dependent polynomials
— see the section on related research for more details.

This kind of indexing information is actually very natural and is already widely
used in many sorted algebra. In such a setting, each operator is assigned an out-
put sort and, for each operand position, the sort of the expression that is required
in that position is given. For instance, in the following two sorted signature

if : Bool× Int× Int→ Int zero : Int
succ : Int→ Int eq : Int× Int→ Bool
not : Bool→ Bool or : Bool× Bool→ Bool

the if-operator produces something of sort Int and has three input positions re-
quiring data of sort Bool, Int and Int respectively. More surprisingly, indexed
containers encompass a number of other computationally interesting examples
which go well beyond examples driven by intuition based upon datatypes with
shapes and positions. Indeed, in section 7.3, we show how interaction structures
and the refinement calculus can be simply analysed with indexed containers.

Our Contributions: This paper develops the concept of indexed containers.
In detail, we provide

– A definition of indexed containers and their semantic extensions as functors
over slice categories.

– A new grammar of indexed strictly positive types which forms a calculus of
indexed containers. We prove a completeness theorem for this grammar.

– A collection of operations such as differentiation, monoidal closure and modal
operators which are definable as operations on indexed containers.

– A notion of morphism between indexed containers. We prove that they are
in bijective correspondence with the natural transformations between con-
tainers.

– A different notion of morphism based upon simulation arising from interac-
tion structures.

– Applications to i) the semantics of datatypes as in Epigram; ii) interaction
structures; and iii) the refinement calculus

This paper is designed to be read as a set theoretic, type theoretic and categor-
ical development of the theory of indexed containers so the paper can be read
by as wide an audience as possible of those interested in program construction.
By working in the category of Sets, readers can follow our arguments, construc-
tions and examples without needing a categorical or type theoretic background.
However, to ensure our constructions are valid in any standard model of a pro-
gramming language the paper is written using type theory and category theory.



There are occasions when the one presentation is simpler than the other and
hence, by use of an internal language linking the two, we can enjoy the best, and
avoid the worst, of both worlds.
Formally, the internal language links the extensional type theory MLW-EXT
(see[7]) with finite types, W -types, a proof true 6= false (but without universes)
to locally cartesian closed categories with disjoint coproducts and initial algebras
of container functors in one variable. Categorically, we follow standard practise
and represent an I-indexed family by an arrow f : X → I which we think of
mapping every element of X to its index. Type theoretically, we represent an
I-indexed family by a judgement i : I ` X[i] Type — henceforth we omit the
Type annotation. Given such an f , its representation in type theory is the

judgement i : I ` f [i] where f [i] is defined to be Σx : X.f(x) = i. On the
other hand, give a type theoretic I-indexed family i : I ` X[i], its representation
categorically is the function π0 : (Σi : I.X[i]) → I. Note the use of round
brackets to denote function application and square brackets to denote the fibre
over an index. We often define an I-indexed family f by giving, for each i, the
fibre f [i] and note that an indexed family f is equivalent to the indexed family
Σi : I.f [i]. More details of the internal language, and its interpretation in the
category of Sets are given in the appendix.

The structure of the paper is as follows. Section 2 briefly recapitulates the
notion of unindexed containers, and their extension as endofunctors. Section 3
contains definitions of containers indexed over given input and output types,
their extensions as functors between slice categories over those types, and the
three basic forms of endofunctor from which they are composed. Section 4 gives
a grammar of indexed strictly positive types, and establishes that it is both
sound and complete with respect to indexed containers. (The treatment of fixed
points is postponed to section 6.) Section 5 turns to morphisms between indexed
containers with given index types, and defines a notion that precisely captures
natural transformations between their extensions, thus extending the representa-
tion theorem for unindexed containers established in previous papers. In section
6 we treat fixed points (both initial algebras and terminal coalgebras) for in-
dexed containers, completing the semantics for the calculus of indexed strictly
positive types begun in section 4. Section 7 considers applications: firstly to the
foundations of the dependently typed programming language Epigram, and sec-
ondly to the refinement calculus and finally to the specification of imperative
interfaces, such as may be required for modules written in Epigram to interact
with modules written in other languages. Finally, in sections 8 and 9 we com-
ment on related research, and those respects in which we have gone further, and
remark on some possibilities for further research.

2 A Brief History of Containers

Containers capture the idea that concrete datatypes consist of memory locations
where data can be stored. For example, any element of the type List(X) of lists
of X can be uniquely written as a natural number n given by the length of the



list, together with a function {0, . . . , n − 1} → X which labels each position
within the list with an element from X:

n : Nat ` f : {0 . . . n− 1} → X .

We think of the set {0, . . . , n − 1} as n memory locations while the function f
attaches to each of these memory locations the data to be stored there. To avoid
commitment to any specific semantic domain, we are led to consider datatypes
which are given by shapes S and, for each s : S, a type of positions P [s].

Definition 1 (Container). A container S / P consists of a S-indexed family
P . That is, either a judgement s : S ` P [s] or an arrow f : P → S.

This definition does not restrict us to the category of sets but is designed to be
interpreted in any locally cartesian closed category, as well as certain forms of fi-
bration such as comprehension categories or models of Martin-Löf type theory [5,
2, 1]. Nevertheless, if the reader wishes, he/she can work in Sets and regard a
container as a set of positions S, and for each s : S, a set of positions P [s].
As suggested above, lists can be presented as a container with shapes Nat and
positions n : Nat ` Fin[n].

The extension of a container is an endofunctor on the underlying LCCC
defined as follows:

Definition 2 (Extension of a Container). Let S / P be a container. Its
extension, is the functor TS/P defined by

TS/P (X) = Σs : S. P [s]→ X

Set theoretically, an element of TS/P (X) is thus a pair (s, f) where s : S is a
shape and f : P [s]→ X is a labelling of the positions over s with elements from
X. Note that TS/P (X) really is a functor since its action on a map g : X - Y
sends the element (s, f) to the element (s, g ·f). Thus for example, the extension
of the container for lists is the functor mapping X to Σn : Nat.Fin[n] → X -
such pairs clearly bijectively correspond to lists.

The theory of containers was developed in a series of recent papers [5, 2, 1] which
showed that containers encompass a wide variety of types, as they are closed
under various type forming operations such as sums, products, constants, fixed
exponentiation, (nested) least fixed points and (nested) greatest fixed points.
Therefore containers provide an algebraic treatment of strictly positive types.
The generalisation to indexed containers aims to go further and develop the
meta-theory required to compute with the much larger and more expressive
class of inductive families of types.

3 Indexed Containers

An agreeably straightforward notion of a indexed container is that of a container
S / P together with an assignment of an index sort for each shape, and an
assignment of an index sort to each input position in that shape.



Definition 3 (Indexed Containers). If I and O are input sorts and output
sorts respectively, an (I,O)-indexed container (S, P, q, r) : IC(I,O) is given type
theoretically by judgements

` S s : S ` P [s]
q : S → O r : (Σs : S.P [s])→ I

or (alternatively) categorically as a container f : P → S together with indexing
information given by arrows q : S → O and r : P → I.

P
f- S

I

r ?
O

q?

The Nat-indexed families Fin and Lam we met in the introduction arise as
fixed points of indexed containers (SF , PF , qF , rF ) and (SL, PL, qL, rL) defined
as follows:

Example 4 (Fin and λ-terms). There are two ways of producing an element of
type Fin[n+1]. The first (corresponding to the constructor 0) requires no input,
while the second (corresponding to the constructor S) requires one input indexed
by n. Thus we set

SF [n + 1] = {0,S} PF [n + 1, 0] = 0 PF [n + 1,S] = 1
qF (n + 1,−) = n + 1 rF (n + 1, 0,−) = ! rF (n + 1,S, ∗) = n

A similar analysis for λ-terms suggests defining

SL[n] = Fin[n] + {App,Abs} qL(n,−) = n

PL[n, i] = 0 PL[n, App] = 2 PL[n, Abs] = 1
rL(n, i,−) = ! rL(n, App, x) = n rL(n, Abs, ∗) = n + 1

Next, we give the extension of an indexed container as a functor. Since the inputs
are I-sorted and the outputs are O-sorted, this extension will map I-indexed
families to O-indexed families as follows

Definition 5 (Extension of an Indexed Container). Let (S, P, q, r) : IC(I,O)
be an indexed container. Its extension is the functor [[S, P, q, r]] : C/I → C/O
whose action on objects maps an I-indexed family k to the O-indexed family
whose fibre at o : O is given by

[[S, P, q, r]] k o = Σs : S. q s = o ∧Πp : P [s]. k[r(s, p)]

The action of [[S, P, q, r]] on morphisms is analogous to that for containers.

Set theoretically, this definition says that to produce an element of [[S, P, q, r]] k
which is indexed by o, we must pick a shape that will produce something of type
o and then assign to every input position of that shape, a piece of data from k



whose input type is that expected by r. Presented categorically, the extension
of an indexed container takes on the following particularly simple and elegant
form which highlights the fact that the extension of an indexed container is the
composite of simpler functors:

C/I
∆r- C/P

Πf- C/S
Σq- C/O

That the type theoretic and categorical definitions agree is proven by translating
the categorical definition into the internal language. This shows the following

Lemma 6. Let f : I → I ′. Then the reindexing functor ∆f and its left and right
adjoints Σf and Πf are extensions of the indexed containers (id : I → I, id, f),
(id : I → I, f, id) and (f : I → I ′, id, id) respectively.

In summary, indexed containers can easily be seen as embellishments of con-
tainers with indexing information. Apart from making the concept of a indexed
container straightforward, this metaphor of indexing has the practical benefit
that much of the technical development of indexed containers can be inherited
from that for containers. Formally, a container S / P can be considered as a
indexed container with I = O = 1 with q and r being the unique maps into 1.
In the other direction, if (S, P, q, r) is a indexed container, there is an obvious
‘forgetful’ functor which forgets the indexing information, leaving the underlying
container S / P . There is another embedding of a container S / P as an indexed
container (S, P, id, !) : IC(1, S) which records the shape information as the in-
dex. This can be useful on occassions, — for example when specifying zip to
work on lists of equal length, or operations on matrices (13). Indexed Containers
of this form have one shape for every output index and hence can be thought of
as indexed reader monads as they just read data into the positions.

4 Indexed Strictly Positive Types

Surprisingly the grammar of indexed strictly positive types which we use to
generate indexed containers is very different from that of strictly positive types
which plays the analogous role for containers. While strictly positive types consist
of nested fixed points of polynomial functors built from sum and times, indexed
strictly positive types are based around nested fixed points of reindexing ∆f and
its left and right adjoints Σf and Πf .

Definition 7 (Indexed Strictly Positive Types). If I and O are input and
output sorts respectively, the indexed strictly positive types (ISPTs) from I to O
are denoted ISPT(I,O) and are defined in Figure 1.

We shall see that all ISPTs define indexed containers and hence that ISPTs
represent functors over slice categories. Because fixed points are inherently more
complex, we treat them in a separate section and so define ISPT0(I,O) to be
those T : ISPT(I,O) which do not contain any fixed points.



Id : ISPT(O, O)

k : X → O

K k : ISPT(I, O)

f : O′ → O T : ISPT(I, O)

∆f T : ISPT(I, O′)

A : ISPT(I, O) B : ISPT(I, O)

Tag A B : ISPT(I, O + O)

f : O → O′ T : ISPT(I, O)

Σf T : ISPT(I, O′)

T : ISPT(I + O, O)

µT : ISPT(I, O)

T : ISPT(I + O, O)

νT : ISPT(I, O)

f : O → O′ T : ISPT(I, O)

Πf T : ISPT(I, O′)

Fig. 1. Indexed Strictly Positive Types

Lemma 8. Every T : ISPT0(I,O) defines a functor [[T ]] : C/I → C/O which is
the extension of an indexed container in IC(I,O)

Proof. We go through the cases. Id : ISPT0(O,O) represents the identity func-
tor on the slice category C. This is the extension of the indexed container

O �id
O

id- O
id- O

Next, K k : ISPT0(I,O) represents the constant k-valued functor which is the
extension of the indexed container

I �!
0

!- X
k- O

For a tagged sum Tag A B : ISPT0(I,O + O), let [[A]] be the extension of
the indexed container (fA : PA → SA, qA, rA) and [[B]] be the extension of the
indexed container (fB : PB → SB , qB , rB). Then

[[Tag A B]] k [inl o] = [[A]] [o] [[Tag A B]] k [inr o] = [[B]] [o]

This is the extension of the indexed container

I �[rA,rB ]
PA + PB

fA+fB- SA + SB
qA+qB- O + O

For ∆f T : ISPT0(I,O′), let [[T ]] be the extension of the indexed container
(S, P, q, r). Then [[∆f T ]] represents the functor ∆f .[[T ]] which maps an I-indexed
family k to the O′-indexed family with the following fibres

[[∆f T ]]k[o′] = (∆f .[[T ]])k[o′] = [[T ]]k[fo′]

Thus [[∆f T ]] is the extension of the indexed container (S′, P ′, q′, r′) defined by

S′[o′] = S[f o′] P ′[o′, s] = P [s]
q′(o′, s) = o′ r′((o′, s), p) = r(s, p)

For ΣfT : ISPT0(I, O′), let [[T ]] be the extension of the indexed container
(f : P → S, q, r). Then [[Σf T ]] represents the functor Σf .[[T ]] which maps an
I-indexed family k to the O′-indexed family with the following fibres

[[Σf T ]] k [o′] = (Σf .[[T ]]) k [o′] = Σo : O.f o = o′ × [[T ]] k o



Thus [[Σf T ]] is the extension of the indexed container

I �r
P

f- S
f.q- O′

Finally, for Πf T : ISPT0(I,O′), let [[T ]] be the extension of the indexed con-
tainer (S, P, q, r). Then [[Πf T ]] represents the functor Πf .[[T ]] which maps an
I-indexed family k to the O′-indexed family with the following fibres

[[Πf T ]] k [o′] = (Πf .[[T ]]) k [o′] = Πo : O.(f o = o′)→ [[T ]] k o

Thus [[Πf T ]] is the extension of the indexed container (S′, P ′, q′, r′) defined by

S′[o′] = (Π o : O) (fo = o′)→ S[o]
P ′[o′, g] = (Σ o : O) (Σ q : f o = o′) P [g(o, q)]
q′(o′, g) = o′

r′((o′, g), (o, q, p)) = r(g(o, q), p)

Although appearing minimal at first, a whole host of other operators such as
sums, products, fixed exponentials and composition are definable for ISPTs and
hence for indexed containers

Lemma 9. ISPT0s are closed under sums, products, fixed exponentials and
composition.

Proof. Let A and B be two ISPT0s. Then the coproduct [[A]]+[[B]] is represented
by the ISPT0 Σ[id, id] (Tag A B), while the product [[A]]× [[B]] is represented by
Π[id, id] (Tag A B). If K is a fixed object, then the fixed exponential K → [[A]]
is represented by Ππ1 (∆π1 A).

To prove that [[A]]·[[B]] is represented by an ISPT0, use induction on the structure
of A. For example, if A = ΠfA′, then

[[Πf A′]] · [[B]] = (Πf · [[A′]]) · [[B]] = Πf · ([[A′]] · [[B]])

By induction, [[A′]] · [[B]] is represented by an ISPT we are done. Other cases are
similarly easy.

We have already seen that ISPT0s are indexed containers. Now we can prove the
reverse and thereby lift the closure properties of ISPT0s to indexed containers -
this forms a completeness theorem in that all indexed containers can be defined
as ISPT0s.

Lemma 10. The grammar for ISPT0s is complete in that all indexed containers
are ISPT0s. Further, indexed containers are closed under composition.

Proof. Every indexed container has an extension of the form Σq ·Πf ·∆r. Each
of these composites are clearly ISPT0s and, since ISPT0s are closed under
composition, the indexed container is representable by a ISPT0. The composite
of two indexed containers is thus representable as the composite of two ISPT0s
which is therefore given by an ISPT0 and hence an indexed container.



Note that the ISPT constructors Tag,∆,Σ and Π act upon the output. A
natural question is why we do not have similar constructors to act upon the input
of a container. The composition theorem provides the answer to this question
by ensuring that constructors to act on the input are already definable. Thus,
to summarise, indexed containers and ISPTs define the same class of functors
over slice categories. However, the former give a closed algebraic form of such
functors as a triple of arrows, while the latter give a calculus for building indexed
containers.

5 Categories of Indexed Containers

What are the interesting notions of morphism between indexed containers, with
the same sets I, O of input and output sorts? We clearly want to capture natural
transformations between the extensions of the indexed containers in the same
way that we did for containers. A natural set theoretical definition is that an
indexed container morphism from (S, P, q, r) to (S′, P ′, q′, r′) is a container mor-
phism (S, P ) - (S′, P ′) between the underlying containers that preserves the
sorting information. This intuition provides the basis for the folloing definition.

Definition 11. Given sets I and O, a morphism between indexed containers
from (S, P, q, r) to (S′, P ′, q′, r′) is given by

– Underlying Morphism: A container morphism 〈u, f〉 of plain containers from
(S, P ) to (S′, P ′). That is, a pair of u : S → S′ and a reindexing morphism
f : Πs : S.P ′[u s]→ P [s]

– Output index preservation: q′ · u = q : S → O
– Input index preservation: (Π s : S, p : P ′[u s]) r′(u s, p) = r(s, f(s, p))

Categorically, these conditions amount to the following diagrams commuting.

S
u- S′ P ′[u s]

f s- P [s]

O

r
?

= O

r′

?
I

r′(s,−)
?

= I

r(s,−)
?

This definition of indexed container morphisms means that, for each I and O, the
indexed containers IC(I,O) form a category. The representation theorem of [4, 1]
says that there is a full and faithful functor from the category of containers and
container morphisms to the category of endofunctors on C and natural transfor-
mations. In other words, morphisms between containers correspond bijectively
to natural transformations between their extensions. Note the generalisation to
indexed containers is not an immediate generalisation of the bijection between
container morphisms and their extensions as we cannot appeal to Yoneda.

Lemma 12. There is a full and faithful embedding [[−]] : IC(I,O)→ [C/I, C/O].
That is, there is a bijection between natural transformations between the exten-
sions of indexed containers and indexed container morphisms.



Since naturality is straightforward, we concentrate on the bijection. A natural
transformation between indexed containers [[f : S → P, q, r]] and [[f ′ : S′ →
P ′, q′, r′]]. Then, for every I-indexed family k, there is a map in C/O

ΣqΠf∆rk - ([[S′, P ′, q′, r′]])k

Using the adjointness Σq a ∆q, this gives a map

Πf∆rk - ∆q([[S′, P ′, q′, r′]]k)

Now, we choose k to be r : P → I and note that the identities over P form a
cone over P →r I ←r P and hence the universal property of the pullback ∆rr
gives a map δp : idP → ∆rr. Noting that idP is the terminal object in C/P , we
can apply Πf to δp and then compose with the transpose of αr above to give a
map in C/S

idS
- Πf∆rr - ∆q([[S′, P ′, q′, r′]]r)

Since any map h : f → g in a slice category is equivalent to one of the form
Πs : S.f [s]→ g[s], we thus have a term of type

Πs : S.ids[s]→ ∆q([[S′, P ′, q′, r′]]r)[s] =
Πs : S.∆q([[S′, P ′, q′, r′]]r)[s] =
Πs : S.[[S′, P ′, q′, r′]]P [q s] =
Πs : S.Σs′ : S′.q′ s′ = q s ∧ Πp′ : P ′[s′]P [r′(s′, p′)] =
Σu : S → S′.Πs : S.q′(u s) = q s ∧ Πp′ : P ′[u s].P [r′(u s, p′)] =
Σu : S → S′.Πs : S.q′(u s) = q s ∧ Πp′ : P ′[u s].Σp : P [s].r(s, p) = r′(u s, p′) =
Σu : S → S′.Πs : S.q′(u s) = q s ∧

Σf : P ′[u s]→ P [s].Πp′ : P ′[u s].r(s, f p′) = r′(u s, p′)

which produces exactly an indexed container morphism as required.

In the reverse direction, note we can follow the chain of equalities backwards.
That is, given a u and f as above, we create for every I-indexed family k, and
arrow αk : Πf∆rk → ∆q([[S′, P ′, q′, r′]]k) in C/S by setting

αksφ = (u s, φ′) where φ′(p′) = φ(f p′)

The bijection between container morphisms and natural transformations is very
useful for practical reasoning as it allows us to reduce problems concerning poly-
morphic functions to problems concerning arithmetic on shapes and positions,
for an clear example see the proof that reversing a list twice returns the original
list [4]. More substantially, in the AI field, containers seem to be exactly the
right notion to increase the expressive power of Bundy’s ellipses [14] notation
and to generalise ellipses from lists to other data structures. Similarly, we now
give an example of reasoning with indexed container morphisms.



Example 13 (Matrix Transposition is involutive). Let Mm,n(X) be the Nat ×
Nat-indexed family of m by n matrices which store data of type X. For every
m and n, there is only one shape of matrices which contains Fin[m] × Fin[n]
locations for data of type X. Thus such matrices are defined by the indexed
container M : IC(1,Nat×Nat) as follows

S = Nat×Nat q = id
P [m,n] = Fin[m]× Fin[n] r(m,n,−) = !

For each type X, matrix transpose should have type Mm,n(X)→Mn,m(X) and
is represented by the indexed container morphism which sends the shape (m,n)
to the shape (n, m) and a position (j, k) : Fin[m]×Fin[n] to the position (k, j) :
Fin[n]×Fin[m]. This is clearly and idempotent operation. While appearing overly
simple, it is worth noticing that the simplicity is due to the presence of indexing
information and the shapes and positions metaphor - formalisms lacking these
concepts typically have to reinvent them and the proofs can quickly become
cumbersome.

6 Fixed Points

We show how to construct initial and terminal coalgebras for indexed contain-
ers. We start with a non-parameterized construction, which in the case of initial
algebras can be found in [20]. We observe that the construction dualizes, i.e. also
works for terminal coalgebras. We extend this to a parameterized construction
of initial algebras, which uses a modality ♦ on trees constructed using non-
parameterized initial algebras. The parameterized construction also dualizes.
Consequently, this gives parameterized initial algebras and terminal coalgebras
of all indexed containers — this allows us to interpret the corresponding con-
structors for ISPTs. We provide sketch proofs but defer the detailed verification
that the constructed objects have the required universal properties to the jour-
nal version of this work.

We first construct the least fixpoint of a non-parameterized container (S, P, q, r) :
IC(O,O), that is an O-indexed family µ(S, P, q, r) : C/O which is the carrier of
the initial [[S, P, q, r]]-algebra. Clearly, the initial algebra of the underlying con-
tainer S / P is WS/P . Our task is to select those trees in WS/P which respect
the typing constraints of q and r. That is, we must ensure that at every node the
index of the shape stored there must be what is expected. Thus, we construct
µ(S, P, q, r)[o] = Σw : WS/P .Goodq,r [(w, o)] as a subobject of WS/P by defining
an indexed family Goodp,q : C/(WS/P )×O. First, define functions by primitive
recursion over WS/P :

idealr : WS/P → O →WS×O/∆π0P

actualq : WS/P →WS×O/∆π0P



by

idealr (sup s f) = λo.sup (s, o) (λp.idealr (f p) (r (s, p)))
actualq (sup s f) = sup (s, q s) (λp.actualq (f p))

idealr calculates a tree with labels assigned to subtrees by r, while actualq assigns
a label to each node in the tree based upon q. Goodr,q holds if both relabelled
trees agree:

Goodq,r [(w, o)] ∆= (idealr w o = actualq w)

Categorically, this corresponds to an equalizer.
We have shown in [4] that we can construct MS/P that is the terminal coal-

gebra of the extension of S / P using only W-types via an internal limit con-
struction. Given this, we can construct ν(S, P, q, r) : C/O which is the carrier of
the terminal [[S, P, q, r]]-coalgebra by modifying the construction given above: we
define ν(S, P, q, r) [o] = Σw : MS/P .Good′q,r [(w, o)] as a subobject of MS/P . We
observe that the recursive equations defining idealr and actualq are also guarded
and hence give rise to

ideal′r : MS/P → O →MS×O/∆π0P

actual′q : MS/P →MS×O/∆π0P

and we can define as above:

Good′q,r [(w, o)] ∆= (ideal′r w o = actual′q w)

An example for the non-parameterized initial algebra construction is the defini-
tion of the modality ♦R : C/WS/P given R : C/S which will turn out to be useful
for the parameterized case. Intuitively, ♦R [w] corresponds to the proof-relevant
interpretation of the predicate that R holds for some shape s : S in the tree
w : WS/P . ♦R is the initial algebra of

P♦
f♦- S♦

WS/P

r♦ ?
WS/P

π0?

where

S♦ = Σsup s f : WS/P .R [s] + P [s]
P♦ [(w, inr p)] = 1
P♦ [(w, inl p)] = 0
r♦ (sup s f, p) = f p

Type-theoretically ♦R : C/WS/P is given inductively by the following construc-
tors:

r : R s
stop r : ♦R (sup s f)

p : P s d : ♦R (f p)
step p d : ♦R (sup s f)



In general inductive and coinductive definitions may be nested and hence we need
a more general, parameterized, version of initial algebras and terminal coalgebras
of indexed containers than that afforded by the non-parameterised case. That is,
given an indexed container (S, P, q, r) : IC(I + O,O) and whose extension is a
functor C/(I+O)→ C/O or isomorphically F : C/I → C/O → C/O, we construct
an indexed container µ(Sµ, Pµ, qµ, rµ) : IC(I,O) such that [[µ(S, P, q, r)]] g is the
initial [[S, P, q, r]] g-algebra for every g : C/I. To calculate the shapes Sµ and
output indexing function qµ of the least fixed point, note that we need not
consider the parameterisation by I. Hence, we partition P into positions above
I and O, say P = PO + PI with indexing functions rI , rO and then define Sµ

and qµ to be the non-parameterised least fixed point of the following container:

PO
inr- PO + PI

f- S

O

rO ?
O

q?

We still have to construct the I-indexed family of positions given by Pµ and the
map rµ : Pµ → I. Intuitively, Pµ is given by calculating for each node in the
tree, the positions PI at that node. Hence we set

Pµ[(w, g)] = ♦PI [w]

Note here that g is the proof that w is a good tree arising from the non-
parameterised initial algebra construction. Finally, define rµ : Π(w,−) : Sµ.♦P1 w →
I using derivable primitive recursion over ♦P1 [w]:

rµ(sup s f, g) (stop p1) = rI p1

rµ(sup s f, g) (step p0 d) = rµ(fp0, g
′) d

where g′ is obtained from g by noting that any branch of a good tree is good.
This finishes the construction of the parameterized initial algebra.

The parameterized terminal coalgebra is constructed analogously, i.e. use the
non-parameterised final coalgebra construction to calculate Sν = ν(S, PO, q, rO) :
C/O, and notice that the inductive definition of ♦ also works for MS/P giving
rise to ♦′ R ∈ C/MSP for R : C/S. However, note that ♦′ is still constructed as
an initial algebra reflecting the fact that paths in a potentially infinite tree are
inductively given. Hence the definition of r′ by primitive recursion also works in
the terminal coalgebra case.

Finally, we finish by completing the treatment of ISPTs. Note that we wanted
to prove that the composition of ISPTs was an IS but only did that for those
ISPTs which contained no fixed points. We now rectify that situation

Lemma 14. ISPTs are closed under composition.

Proof. Consider the case of a composition [[µF · G]] where F : ISPT(I + O,O)
and G : ISPT(I ′, I). Notice that

[[µF ·G]] = µ[[F ]] · [[G + idO]]



where G + id0 : IC(I ′ + O, I ′ + O) is the obvious extension of G. By induction,
[[F ]] · [[G + idO]] is the extension of an ISPT and hence so is µF ·G.

As a result the proofs at the end of section 4, lift to all ISPTs.

7 Applications

7.1 Indexed Containers in Epigram

One motivation for studying indexed containers is that they offer a straightfor-
ward foundation for inductive families [18], the key data structures supported
by our dependently typed functional programming language Epigram [33]. As
things stand, Epigram accepts inductive definitions which conform to the syn-
tactic criteria for strict positivity set out by Luo [31], but indexed containers
have the potential to yield a much more flexible and compositional approach,
plus, their semantic character means that, the criteria for strict positivity may
be expressed in Epigram itself.

In Epigram syntax, our finite set example looks like this:

data n : Nat
Fin n : ?

where
fz : Fin (suc n)

i : Fin n
fs i : Fin (suc n)

As we have seen, this is readily represented as the least fixpoint of an indexed
container. Indeed, any inductive family which Luo’s rules admit may be ex-
pressed in this way. Luo admits inductive families IFam with a telescope [16]
of indices, ~o : ~O, and constructors ci. Each constructor has a telescope of non-
recursive arguments ~a and a some recursive arguments; each recursive argument
fj has a telescope of parameters, ~h, allowing infinitary branching. We write

data ~o : ~O
IFam ~o : ?

where · · · ~a : ~Ai · · · fj : Π~h : ~Hij . IFam ~rij · · ·
ci ~a ~f : IFam ~qi

· · ·

where neither the ~Ai nor the ~Hij may refer to IFam. In our setting, we can capture
each dependent telescope ~x : ~X as an iterated Σ-type, Σ ~X. Luo’s rules fix a
sum-of-tuples representation for both shapes and positions: a shape is a choice
of constructor, then a tuple of non-recursive arguments; a position is a choice
of recursive argument, then a tuple of branching parameters. IFam becomes the
least fixpoint of [[S, P, q, r]] : C/Σ ~O → C/Σ ~O where

S = Σi.Σ ~Ai P [(i,~a)] = Σj.Σ ~Hij

q (i,~a) = (~qi) r ((i,~a), (j,~h)) = (~rij)

Choosing a container representation of datatypes adds no expressive power.
Any least fixpoint of an indexed container [[S, P, q, r]] : C/(I + O)→ C/O can be



turned into a clumsy but legitimate Epigram datatype:

data F : I → ? o : O
Ind F o : ?

where

s : S f : ∀p :P [s] ; i :I ⇒ r s p = inl i→ F i
g : ∀p :P [s] ; o :O ⇒ r s p = inr o→ Ind F o

con s f g : Ind F (q s)

Rather, one strength of the container approach is its modularity. Luo’s fixed
format for strict positivity is somewhat conservative. It excludes, for example,
the re-use of standard lists in the formation of rose trees, given by Tree =
node(ListTree), and hence the re-use of library functionality. However, by broad-
ening the notion of strictly positive operator to indexed containers in general,
such convenient definitions become acceptable.

Moreover, identifying data structures as containers gives us direct access to
functionality and theorems for free. We certainly get their functoriality. We also
gain useful predicate transformers lifting predicates Φ from individual elements
to containers of them, eg., ‘somewhere Φ’ and ‘everywhere Φ’. From the pro-
gramming side of the Curry-Howard correspondence, this is also very useful: if
we are writing an interpreter for an embedded language, it is natural to define
values as a family Value : Type → ?; if contexts are containers of Type, then
everywhere Value equips them with a suitable notion of environment.

Containers have a great deal of structure ripe for exploitation by functional
programmers. The techniques of datatype generic programming [11] can be used
to compute instances of programming patterns, given the structure of the data to
which they are being applied. Where Generic Haskell [15] delivers this function-
ality via a preprocessor, it is possible to model it via universes in a dependent
type theory [12]. By identifying—and reflecting as data—the grammar of in-
dexed containers (something similar to ISPTs above) to use as the basis for
Epigram’s datatype definitions, we provide generic programming directly for
Epigram itself, not just for an Epigram model of another type system.

A striking example of generic programming is the derivative construction
which lies at the heart of Huet’s ‘zipper’ representation of one-hole contexts
in tree-like structures [27]. The generic construction, observed in [32] has been
implemented in Generic Haskell [24], and in Epigram [35]. Our container based
analysis [6] readily extends to indexed containers and hence dependent types.
Where we had

∂(s : S / P [s]) = (s : S ; p : P [s] / Σp′ : P [s]. p′ 6= p)

we now have ∇, taking an IC(I, O) container to an IC(I,O × I) container:

∇(S, P, q, r) =
(

s : S ; p : P [s], Σp′ : P [s]. p′ 6= p,
λ(s, p). (q s, r (s, p)), λ((s, p), (p′, )). r (s, p′))

)

7.2 The Refinement Calculus

In constructive type theory with a universe ∗, the contravariant powerset functor
is defined as P(I) = I → ∗ and we often think of an element p of P(I) as a



predicate over I such that p(i) is the type of proofs that p holds of i. Categor-
ically, p corresponds to an object f : X → I in the slice over I with the proofs
that i holds being given by the fibre f [i]. Using this notation, we can now give a
computational representation of monotone (because functorial) predicate trans-
formers as in the refinement calculus of Back and von Wright [9, 34]. A relation
R : O → P(I) between O and I determines two predicate transformers 〈R〉 and
[R], where

〈R〉, [R] : PI → PO

〈R〉(U) ∆= { o : O |R(o) G U }
[R](U) ∆= { o : O |R(o) ⊆ U }

Here U G V is shorthand for (∃i : I)U(i)∧V (i), while ⊆ corresponds to fibrewise
inclusion in the slice category interpretation. These are known as angelic and
demonic nondeterministic update. When the relation happens to be the graph of
a function f (that is, total and single valued), it is direct that 〈f〉 = [f ] (where
the coercion of a function to its graph is left implicit). This predicate transformer
is just substitution along f , sometimes called a functional or deterministic pred-
icate transformer (and used to model assignment).

The key adjunction that relates these predicate transformers is

〈Rop〉U ⊆ V

U ⊆ [R]V

The adjunction above then immediately specialises to the familiar adjunctions
∃f = 〈f op〉 a (·f) a ∀f = [f op].

These modalities can be transferred directly into the framework of slice cat-
egories in a locally cartesian closed category, in the following way. First, we may
represent a relation from O and I as a span, which is to say a pair of mor-
phisms O �p

X
q- I sharing a common domain. In other terms, a span

may be identified with a slice over the product O × I. Such a span determines
two degenerate indexed containers, namely

X
q- I

I

p ?
I

id?

X
id- X

I

p ?
I

q?

The extensions of these containers may be computed by definition 5 and are
respectively Σq · ∆p and Πq · ∆p. The converse of a span O �p

X
q- I

is obtained simply as I �q
X

p- O, and then the key adjunction of the
refinement calculus is Σp ·∆q a Πq ·∆p. To establish this, we need only find a
natural bijection

Σp(∆qs) - t

s - Πq(∆p)t

This is immediate from the adjunctions Σf a ∆f a Πf .



There is an immediate payoff for treating predicate transformers as indexed
containers. The main normal form theorem in the refinement calculus ([10, Thm
13.10]) says that any monotone predicate transformer can be expressed as the
composition of an angelic after a demonic update, which is to say in the form
〈Q〉 · [R]. So in fact, in the context of functors on slice categories of a locally
cartesian closed category, we obtain a strengthened form of this theorem. Since
〈Q〉 and [R] are extensions of indexed containers, so is their composite. Thus
every monotone predicate transformer can be factored in the form 〈rop〉·[f op]·∆q.
That is, the relations used in the angelic and demonic updates may be chosen to
be converse graphs of functions, with a third component which is a deterministic
update.

7.3 Imperative Interfaces and Container Drivers

Notice that in definition 11 of container morphism, the input indices I and out-
put sorts O are fixed, and we have a category IC(I,O). This is perfectly natural
when the application for containers we have in mind is to represent data types or
signatures over fixed spaces of input and output sorts. There is however another
application to which containers and indexed containers may be put, namely to
represent imperative interfaces, specifically command response interfaces. (This
application has been explored in [22], [28], [23], and [21].) Then the indices repre-
sent states, and the containers are used to represent coalgebras over state spaces.
In such a setting, it is natural to investigate notions of morphism between con-
tainers over different state spaces: between IC(I,O) and IC(I ′, O′), particularly
when I = O and I ′ = O′. This reflects the fact that there may well be interfaces
at higher or lower levels of abstraction reflected by the indexes.

A command-response interface consists of a client or angel and a server or
demon. The angel starts by issuing an instruction or command, that the demon
commits or performs, returning a response. The structure used in [21] to rep-
resent such an interface in constructive type theory is a quadruple (O,A,D, n),
called an interaction structure where

O : ∗, Current states
A : O → ∗, Command sets/shapes
D : (Π o : O) A(o)→ ∗, Response sets/positions
n : (Π o : O, a : A(o)) D(o, a)→ O Next state function

Replacing the use of universes with slices as mentioned at the beginning of section
7.2 means that such an interaction structure is simply an indexed container
(A′, D′, q′, r′) : IC(O,O) where

A′ = Σo : O.A(o) q′ = π0

D′[(o, a)] = D(o, a) r′((o, a), d) = n(o, a, d)

Further, the predicate transformer P(O)→ P(O) induced by such an interaction
structure, namely

(λ U) (λ o) (Σ a : A(o)) (Π d : D(o, a)) U(n(o, a, d))



is (when we translate to slices) simply the extension of the indexed container
defined above. This translation of interaction structures into indexed containers
gives the following translation between the ‘dynamic’ metaphor of commands
and responses, and the ‘static’ metaphor of shapes and positions:

static dynamic
shape command
position response

index
{

input
output state

{
next
current

As an example of how the dynamic and static views of indexed containers
can provide structure not apparent in the other, we consider a different notion of
morphism from that already considered. Among predicate transformers between
different sets we find pairs

A : P(X)→ P(Y ) D : P(Y )→ P(X)

such that A ·D ⊆ 1Y and 1X ⊆ D ·A. Then we call (A,D) a simulation pair, or
adjoint pair, with A the lower and D the upper. As a lower adjoint, A commutes
with unions, and so is determined with its values at singletons. It may therefore
be identified with a relation Q = A · { } : X → P(Y ). (The transformer A is in
fact the relational image determined by Q, sometimes written 〈Qop〉 in refinement
calculus notation.) As an upper adjoint, D has the form [Qop], where Qop denotes
the transpose of Q. The part A as it were chooses a low-level encoding of a high-
level state, while D suffers a choice of a high-level decoding of a low-level state.

We take a morphism of indexed containers from h to l to be a simulation
pair (A,D) such that h ⊆ D · l · A . This can be read: h can be implemented
by letting the environment pick a low-level ‘encode’ state, running the low-level
program, then picking a suitable high-level ‘decode’ state. This inclusion (natural
transformation) can be expressed in any of the equivalent forms A · h ⊆ l · A,
h · D ⊆ D · l, and A · h · D ⊆ l. (We leave implicit the semantic ‘extension’
operator.)

We noted above that a simulation may be identified with a relation. It is
shown in [21] that the relation representing a simulation between containers h
and l which are homogeneous on H and L respectively is a coalgebra or post-
fixed point for a certain container h −◦ l homogeneous on HL. When the con-
tainers for the interfaces are given in the form of quadruples (H,Ah, Dh, nh) and
(L,Al, Dl, nl) form, the container for the simulation has the following extension

[[h−◦ l]](Q)〈s, s′〉 ∆= Σ t : Ah(s)→ Al(s′)
f : Dl(s′) · t ⊆ Dh(s)

Π a : Ah(s)
d′ : Dl(s′, t(a))

Q〈nh(s, a, f(a, d′)), nl(s′, t(a), d′)〉

This notion of simulation is known as “forward simulation” or “downward
simulation” in the refinement calculus literature [17].



An interesting property of simulations concerns a notion of safety. Call U :
P(S) safe (or an invariant) with respect to a predicate transformer F : P(S)→
P(S) if accompanied by a morphism U ⊆ F (U) in P(S). Then a simulation
(which is itself a relation Q safe with respect to h−◦ l) maps an h-safe predicate
U to the weakest l-safe predicate 〈Q〉(U) necessary to guarantee U at the high
level.

The use of the symbol ‘−◦’ for linear implication is not an accident. It turns
out (see [29] for full details), that−◦ is right adjoint to the operator⊗ between in-
teraction structures, that can be considered to be a form of synchronous, or lock-
step composition. Given interfaces i1(S1, A1, D1, n1) and i2 = (S2, A2, D2, n2),
their synchronous composition i1 ⊗ i2 = (S, A,D, n) can be defined by

S = S1 × S2,
A(〈s1, s2〉) = A1(s1)×A2(s2),
D(〈s1, s2〉, 〈a1, a2〉) = D1(s1, a1)×D2(s2, a2),
n(〈s1, s2〉, 〈a1, a2〉, 〈d1, d2〉) = 〈n1(s1, a1, d1)n2(s2, a2, d2)〉

Another word for simulation might be ‘driver’. In a operating system for a
computer, there is usually a component of a type known as a driver. It’s task is
to implement a generic device ‘driver’ interface, and simulate various instances
of it using the specific device interfaces supplied by the manufacturers of the
devices. For example, the driver interface supplied by a disk driver may be a
linear array of disk blocks, while the interface supplied by the manufacturer of a
specific disk device may be in terms of seeks, head switching, sector sparing, and
so on. One way to understand this notion of implementation is as a simulation.
This explains the word ‘driver’ that occurs in the heading of this subsection.

As we have seen, interaction structures are indexed containers and hence
this monoidal closed structure on interaction structures gives a monoidal closed
structure on indexed containers. We hope in the future to find further examples
of structure in either either the dynamic world of interaction structures or the
static world of indexed families of datatypes that can be transported to the other
world.

8 Related Research

There are many strands of research to which our paper is intimately connected.
We comment on them but also explain where our work differs.

Indexed containers have previously been considered by Hyland and Gambino un-
der the name of dependent polynomials. They proved that the least fixed point
of an indexed container is an inductive family which can be constructed by W -
types. However, at a technical level our work goes beyond that by considering a
wider class of least fixed points, by considering greatest fixed points, defining a
grammar for indexed containers, defining morphisms and proving the associated
representation theorem and giving the above mentioned collection of definable



operations on indexed containers.

Fiore’s work on generalised species extend indexed containers with certain struc-
tural quotients. However, dealing with these quotients involves the use of sophis-
ticated mathematical structure such as coends etc which makes the resulting
theory rather inaccessible to the broader community. By focusing on indexed
containers we obtain a much simpler theory which is nevertheless expressive in
covering most datatypes which arise naturally. At a technical level, unlike gener-
alised species, our theory of indexed containers is not restricted to the category
of Sets, our grammar for container constructors is different from Fiore’s for gen-
eralised species and our work on container morphisms is completely new.

Perhaps the earliest publication about indexed containers (though not under that
name) occurs in Petersson and Synek’s paper [36] from 1989. They present rules
extending Martin-Löf’s type theory with a set constructor for ‘tree sets’ : families
of mutually defined inductive sets, over a fixed index set. The context param-
eterising this constructor is essentially a homogeneous indexed container.They
give a number of interesting examples (particularly an application to formal
grammar), and sketch a reduction of the tree set constructor to W-types. They
do not consider any notion of morphism between contexts, nor a coinductive
counterpart of their constructor.

Inspired in part by Petersson and Synek’s constructor, Hancock, Hyvernat and
Setzer applied indexed (and unindexed) containers, under the name ‘interac-
tion structures’ to the task of modeling imperative interfaces such as command-
response interfaces in a number of publications. However they worked in Martin-
Löf type theory with a universe, rather than a categorical framework, exploiting
the universe in an essential way. The thrust of this work was to develop in such
a fully constructive (ie. predicative) analysis of predicate transformers. They
presented a coinductive counterpart of Petersson and Synek’s constructor, and
developed Moreover they considered a quite different notion of morphism be-
tween indexed containers, related more to the notion of ‘forward simulation’ in
the refinement calculus of Back and von Wright [9] and Morgan [34], as well as
to the notion of approximable map in formal topology. To a large extent, the
precise connection of this notion with the one described in this paper remains to
be understood. Hyvernat in particular discovered a model of intuitionistic multi-
plicative linear logic, which can be seen as a refinement of the relational model.
Since linear phenomena also occur in the use of containers to model cursors in
data structures [6], it may be interesting to gain a clear perspective on Hyver-
nat’s analysis in the context of the differential calculus of indexed containers.

Finally, although related to our work, most of the research detailed above is
much more theoretical than ours and consequently less accessible to the broader
computer science audience. Our motivations are more computational as demon-
strated by our applications and hence we believe this paper has substantial merit



in taking the developing theory of indexed containers and showing how it can
be applied to more mainstream computer science.

9 Conclusions and Further Work

In this paper, we have shown that indexed containers provide a secure founda-
tion, both type-theoretic and categorical for an expressive calculus in which to
write and reason about a rich variety of datatypes. These comprise both induc-
tively and coinductively defined families of types indexed over given datatypes.
We have indicated, necessarily briefly, some applications to which we intend
to apply this foundation. These are directly concerned with dependently typed
programming.

We see this paper as setting the foundations to develop these applications.
We are currently using indexed continers as the basis for the system of datatypes
in Epigram and hope, in particular, to use them to define generic programs in
Epigram which can be applied to all indexed containers. We also want to further
investigate the relationship with interaction structures, formal topology and the
refinement calculus. Ordered indexed containers also seem a natural object of
study - either for generic traversal algorithms or as the basis of a theory of well
founded orders for data structures for use in, say, rewriting. Finally, the use of
position sets as primitve in the definition of indexed containers makes us think
there is a relation to implicit computational space complexity.

References

1. Michael Abbott. Categories of Containers. PhD thesis, University of Leicester,
2003.

2. Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Categories of containers. In
Andrew Gordon, editor, Proceedings of FOSSACS 2003, number 2620 in Lecture
Notes in Computer Science, pages 23–38. Springer-Verlag, 2003.

3. Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Representing nested in-
ductive types using W-types. In Automata, Languages and Programming, 31st
International Colloqium (ICALP), pages 59 – 71, 2004.

4. Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers - constructing
strictly positive types. Theoretical Computer Science, 342:3–27, September 2005.
Applied Semantics: Selected Topics.

5. Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Derivatives
of containers. In Martin Hofmann, editor, Typed Lambda Calculi and Applications,
TLCA 2003, number 2701 in Lecture notes in Computer Science, pages 16–30.
Springer, 2003.

6. Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. ∂ for data:
derivatives of data structures. Fundamenta Informaticae, 65(1,2):1–128, March
2005.

7. Peter Aczel. On relating type theories and set theories. Lecture Notes in Computer
Science, 1657:1–??, 1999.

8. Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms
using generalized inductive types. In Computer Science Logic, 1999.



9. Ralph-Johan Back and Joakim von Wright. Refinement calculus, A systematic
introduction. Graduate Texts in Computer Science. Springer-Verlag, New York,
1998.

10. Ralph-Johan Back and Joakim von Wright. Refinement calculus, A systematic
introduction. Graduate Texts in Computer Science. Springer-Verlag, New York,
1998.

11. Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert Meertens. Generic
Programming—An Introduction. In S. Doaitse Sweierstra, Pedro R. Henriques,
and José N. Oliveira, editors, Advanced Functional Programming, Third Interna-
tional Summer School (AFP ’98); Braga, Portugal, volume 1608 of Lecture Notes
in Computer Science, pages 28–115. Springer-Verlag, 1998.

12. Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic programs
and proofs in dependent type th eory. Nordic Journal of Computing, 10:265–269,
2003.

13. Richard Bird and Ross Paterson. Generalised folds for nested datatypes. Formal
Aspects of Computing, 11(3), 1999.

14. Alan Bundy and Julian Richardson. Proofs about lists using ellipsis. In Logic
Programming and Automated Reasoning, pages 1–12, 1999.

15. Dave Clarke, Ralf Hinze, Johan Jeuring, Andres Lö h, and Jan de Wit. The Generic
Haskell user’s guide. Technical Report UU-CS-2001-26, Utrecht University, 2001.

16. Nicolas G. de Bruijn. Telescopic Mappings in Typed Lambda-Calculus. Informa-
tion and Computation, 91:189–204, 1991.

17. W. DeRoever and Kai Engelhardt. Data Refinement: Model-Oriented Proof Meth-
ods and Their Comparison. Cambridge University Press, New York, NY, USA,
1999.

18. Peter Dybjer. Inductive Sets and Families in Martin-Löf’s Type Theory. In Gérard
Huet and Gordon Plotkin, editors, Logical Frameworks. CUP, 1991.

19. M. Fiore, G. D Plotkin, and D. Turi. Abstract syntax and variable binding. In
Proc. of 14th Ann. IEEE Symp. on Logic in Comp. Sci., LICS’99, pages 193–202.
IEEE CS Press, 1999.

20. Nicola Gambino and Martin Hyland. Wellfounded trees and dependent polynomial
functors. In S. Berardi, M. Coppo, and F. Damiani, editors, Types for Proofs and
Programs (TYPES 2003), Lecture Notes in Computer Science, 2004.

21. Peter Hancock and Pierre Hyvernat. Programming interfaces and basic topology.
Annals of Pure and Applied Logic, 2006.

22. Peter Hancock and Anton Setzer. Interactive Programs in Dependent Type Theory.
In P.G. Clote and H. Schwichtenberg, editors, Proceedings of the 14th International
Workshop on Computer Science Logic (CSL 2000), number LNCS 1862 in Lecture
Notes in Computer Science. Springer, August 2000.

23. Peter Hancock and Anton Setzer. Specifying interactions with dependent
types. In Workshop on subtyping and dependent types in programming, Por-
tugal, 7 July 2000, 2000. Electronic proceedings, available via http://www-
sop.inria.fr/oasis/DTP00/Proceedings/proceedings.html.

24. Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data types. Science of
Computer Programmming, 51:117–151, 2004.

25. Martin Hofmann. On the interpretation of type theory in locally cartesian closed
categories. In CSL, pages 427–441, 1994.

26. Martin Hofmann. Syntax and semantics of dependent types. In A. M. Pitts and
P. Dybjer, editors, Semantics and Logics of Computation, volume 14, pages 79–130.
Cambridge University Press, Cambridge, 1997.



27. Gérard Huet. The Zipper. Journal of Functional Programming, 7(5):549–554,
1997.

28. Pierre Hyvernat. Predicate transformers and linear logic: yet another denotational
model. In Jerzy Marcinkowski and Andrzej Tarlecki, editors, 18th International
Workshop CSL 2004, volume 3210 of Lecture Notes in Computer Science, pages
115–129. Springer-Verlag, September 2004.

29. Pierre Hyvernat. A Logical Investigation of Interaction Systems. PhD, Institut
Mathmatique de Luminy, 2005.

30. Bart Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic
and the Foundations of Mathematics. Elsevier, 1999.

31. Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science.
Oxford University Press, 1994.

32. Conor McBride. The Derivative of a Regular Type is its Type of One-Hole Con-
texts. Available at http://www.dur.ac.uk/c.t.mcbride/diff.ps, 2001.

33. Conor McBride and James McKinna. The view from the left. Journal of Functional
Programming, 14(1), 2004.

34. C. C. Morgan. Programming from Specifications. Prentice Hall International Series
in Computer Science, 2nd edition, 1994.

35. Peter Morris, Thorsten Altenkirch, and Conor McBride. Exploring the regular
tree types. In Christine Paulin-Mohring Jean-Christophe Filliatre and Benjamin
Werner, editors, Types for Proofs and Programs (TYPES 2004), Lecture Notes in
Computer Science, 2006.

36. Kent Petersson and Dan Synek. A set constructor for inductive sets in Martin-
Löf’s type theory. In Proceedings of the 1989 Conference on Category Theory and
Computer Science, Manchester, UK, volume 389 of LNCS. Springer Verlag, 1989.

37. Robert Seely. Locally cartesian closed categories and type theory. Mathematical
Proceedings of the Cambridge Philosophical Society, 95:33–48, 1984.

38. Thomas Streicher. Semantics of Type Theory. Birkhauser Boston Inc., 1991.

A The Internal Language

In this conference paper we do not have the space to give a full definition of the
internal language and so we give the basics and refer the reader to the literature
for more details. Formally, the internal language links the extensional type the-
ory MLW-EXT (see [7]) with finite types, W -types, a proof true 6= false but
without universes to locally cartesian closed categories with disjoint coproducts
and initial algebras of container functors in one variable.

Categorically, we follow standard practise and represent an I-indexed family by
an arrow f : X → I of the slice over I which we think of mapping every element
of X to its index. On the other hand, type theoretically, we represent an I-
indexed family by a judgement i : I ` X[i] Type. Substitution is a fundamental
operation in both the categorical and type theoretic domains - if r : I ′ → I, then
the I ′ indexed family is computed categorically as the pullback ∆rf : ∆rX → I ′

or type theoretically as i′ : I ′ ` X[fi i′]. Pullback along r extends categorically
to a functor ∆r : C/I → C/I ′ and local cartesian closure implies that ∆r has a
left and right adjoint which we write Σr and Πr - these correspond to the Σ and



Π types in the type theory. Similarly, W -types in the type theory correspond
exactly to the categorical construction of initial algebras of container functors.
Disjoint coproducts are required to ensure that coproducts behave well categor-
ically - formally the pullback of distinct coprojections into a coproduct is always
the initial object 0. Well behaved coproducts are guaranteed automatically in
the type theory.

To translate from category theory to type theory we represent an I-indexed
family f : X → I type theoretically either as i : I ` f [i] or as i : I ` X[i]
depending which is more meaningful in the context. These are often known
as the fibres above i and are defined by f [i] = X[i] = Σx : X.fx = i. The
translations of ∆r, Σr and Πr can similarly be given as

∆rf [i′] = f [r i′]
Σrf [i] = Σi′ : r[i].f [i′]
Πrf [i] = Πi′ : r[i].f [i′]

In the category of Sets, if B is an A indexed set, that is we have a set B(a)
for every a ∈ A, then

Σa : A.B = {(a, b)|a ∈ A, b ∈ B(a)}
Πa : A.B = {f : A→

⋃
a∈A B(a)|∀a ∈ A.f(a) ∈ B(a)}

In the reverse direction we construct a category from the type theory with objects
given by types and morphisms given by terms. A judgement i : I ` X[i] is
represented in the slice over I by the projection π1 : Σi : I.X[i] → I with
substitution interpreted as pullback and the type theoretic quantifiers Σ and Π
by their categorical counterparts. Full details of the use of internal languages to
link type theory and its categorical semantics can be found in [37], [38], [25, 26],
[30] and [1].


